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Summary 

This report summarizes activities performed within the task 4.1 of the Smart Gems 

project, aimed at the optimized integration of smart buildings into local smart grids.  

Promising approaches and technologies have been explored in connection with the real 

sites available within the framework of the Smart Gems partnership. Advanced 

technologies for the integration of Zero Energy Building (ZEBs), and Nearly ZEBs 

(NZEB), in smart grids have been considered in the context of the NTL building at the 

Cyprus Institute, where a LFR solar thermal collection system is available. The same 

approach has been applied at the TUC campus in Crete. A custom infrastructure of 

sensors and processing boards has been designed, which could be integrated in 

networks and standards already in place. Sizing, positioning and effective operation of 

RES and storage systems in smart grids has been also an object of study by the design 

of district cooling/heating based on geothermal and solar thermal technologies and a 

detailed analysis of study of a battery energy storage system.  

Also optimization approaches by forecasting of electricity consumption has been 

considered, through a specific study performed at the campus of Brunel University of 

London. 

All the activities have seen the participation of researchers both from industry and 

academia. The specific contribution of each seconded researcher is summarized in Table 

1.  

Researcher Sending 
Organisation 

Hosting 
Organisation 

Research Field 

Daniela Isidori 
(author) 

AEA, 
Loccioni 

Technical 
University of 

Crete 

Advanced technologies for the integration of Zero Energy 
Building (ZEBs), and Nearly ZEBs (NZEB), in smart grids. 
Application at the TUC and NUS campus case studies. 

Daniela Isidori 
(author) 

AEA, 
Loccioni 

Cyprus 
Institute 

Study of technologies for the integration of Zero Energy 
Building (ZEBs) in connection with the Solar Thermal Fresnel 
collectors of NTL building 

Laura Standardi 
(author) 

AEA, 
Loccioni 

Brunel 
University 

Study of a battery energy storage system 

Martina 
Senzacqua 
(author) 

AEA, 
Loccioni 

Brunel 
University 

Forecast of electricity consumption of Brunel University 
London campus 

Fernando 
Sanahuja  
(author) 

Exergy Technical 
University of 

Crete 

Sizing, positioning and effective operation of RES for smart 
grids: Design of district cooling/heating based on geothermal / 
solar thermal technologies  

Pietro Muratore 
(author) 

IDEA Technical 
University of 

Crete 

Developing a custom hardware and software infrastructure of 
sensors and boards using the standard and already present 
networks 
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1. Introduction  

A growing importance is attributed to the effective integration of Zero Energy Building 

(ZEBs), and Nearly ZEBs (NZEBs) in local smart grids. As a matter of fact the 

optimization of the grid performance at a settlement level is going to play a key role in 

the upcoming energy models where multiple distributed energy sources are connected 

and jointly cooperate in giving an efficient response to the energy demand (see the 

energy model considered in the Smart Gems approach, represented in Figure 1). This 

objective can be achieved by the combination of different approaches and technologies, 

involving smart energy management systems, interoperable metering, monitoring and 

control devices, procedures for users’ active engagement and internal comfort 

optimisation, flexible distributed storage systems.  

 

Figure 1: The Smart GEMS Energy model, from the building level to the large energy distribution 
networks. 

 

Deployment of smart grids asks for innovative techniques for predicting and controlling 

electricity request to the grid, in order to reduce peaks, improve grid stability and optimize 

electricity costs. Smart grids can even contain millions of smart meters, which produce a 

huge amount of data about energy consumption. In addition to these time series, we can 

have additional correlated information about energy sources, weather, occupancy, 

building performance and so on.  
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A good interpretation of these data leads to predict in advance both electrical and thermal 

energy demand, both in very short and long term. The combination of predictive models 

and storage systems can be very effective in improving the integration of the local to the 

main grid, reducing peaks and decreasing electricity costs. Furthermore, the collected 

data can be used for the early detection of anomalies.  

Smart metering application and testing as a basic component in present and future 

electrical grids has been addressed. As a matter of fact, interoperability among meters 

of various OEMs must be guaranteed as then the control system is enabled to coordinate 

and control all the energy systems which are monitored. For this purpose a  building 

environment has been simulated, where the smart meters utilized belong to different 

firms and their interoperability is tested using dedicated protocols.  

Some tasks have been devoted to characterize services and systems, through activities 

related to the analysis of energy consumption and users satisfaction. Also the possible 

engagement of users has been explored via online surveys, questionnaires and focus 

groups. This combined approach has paved the way for tailored control, which can 

maximize energy performance both from thermal comfort and energy cost perspective. 

These approaches have been specifically applied to buildings that host departments of 

the universities which are in the partnership, the NUS in Singapore and the TUC in Crete. 

A specific action has been addressed to the role of storage systems in the integration of 

smart buildings into the grids, exploring a large variety of possible applications and 

architectures. The goal of this report is to describe how storage systems boost the 

integration of smart buildings into the grids. The flexibility that such systems provide the 

grid and the buildings is crucial as it can be deployed in a large variety of applications 

addressed in this report.  

The integration of solar thermal sources has been considered in the case study of the 

Novel Technology Lab in Athalassa campus of Nicosia. The energy signatures of the 

building have been calculated by starting from common data that are easy collected in 

such smart building, like external temperature, wind, internal temperature. An estimation 

of the loads has been derivated and used to tune and optimize the renewable production 

of thermal energy, by a Trnsys model of both the building and the LFR collector, which 

were already available. This approach may be used to estimate the energy consumption 

for data sets of the outdoor temperature coming from different time—space locations with 

an acceptable error for a preliminary analysis. Improvements via advanced control and 
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data mining techniques for energy predictions have been explored with the aim exploiting 

the thermal production by the LFR collector as part of a smart grid approach.  

A broader exploitation of thermal sources has been taken into account in the case study 

of the K2 building from the Department of Environmental Engineering in the Technical 

University of Crete. The purpose of this study was the design of a combined geothermal 

and solar thermal energy system, which could supply heating and cooling services 

achieving the highest possible efficiency along one year. 

A further step was the preliminary design of a monitoring and control system for buildings 

connected to polygenerative solar systems, which can deliver electricity, cold and heat. 

Multi-Purpose Management (MPM) device networks have been considered, where 

Artificial Neural Network (ANN) can be used for the prediction of energy loads and fuzzy 

control algorithms can keep the optimal comfort conditions. Solutions developed at TUC 

have been considered for a possible industrialization, moving them from a scientific 

development framework to more commercial platforms. Portability issues have been 

addressed, testing options to permit a remote data exchange with the grid. 
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2. Methodology 

2.1 Energy management systems as a key component of micro-grids 

The requirement for clean energy, energy efficiency and cost-efficient energy 

management has given rise to the investigation of transition from traditional energy 

distribution grids to smart micro-grids. In traditional electricity grids energy is produced 

centrally and distributed to the various energy consumers that are connected to the grid. 

Traditional grids lack flexibility in power generation and load operation. A micro-grid 

includes distributed energy sources, energy loads and storage components, thus forming 

a semi-autonomous entity with energy management capabilities. Moreover, a micro-grid 

can operate connected to the main grid or in island mode. For the purpose of reliable and 

efficient operation the Energy Management System (EMS) has become an essential 

component of micro-grids.  

EMS assists in the optimization of power distribution within a micro-grid through the 

application of appropriate controls. Measuring and monitoring and control equipment 

connected through Information and Communication Technologies (ICT) are necessary 

for “building” an EMS. These assets combined with advanced energy management 

techniques make a micro-grid smart. A smart micro-grid communicates with its 

components and through the EMS controls its loads so as to achieve an efficient and 

cost-effective operation. An energy management approach is tested for optimum 

integration and operation of a PV array and a battery for serving a micro-grid’s loads and 

increased efficiency and occupant satisfaction has been achieved by applying the EMS 

in a University Campus.  

Load forecasting is invaluable to micro-grid energy management and Load forecasting 

for controlling charge and discharge of an electrical storage has been largely studied. 

Depending on the forecasted period three types of forecasting are recognised: 

 short-term forecasting: 1h to 1week for optimum 

 medium-term forecasting: 1week to 1year 

 long-term forecasting:  1year to decades ahead. 

Two methods for load forecasting have been recognised in literature, statistic 

mathematical models and artificial intelligence models. Artificial Neural Networks (ANN) 

are artificial intelligence models widely used for forecasting providing high accuracy. ANN 

have been extensively used for short-term load prediction. Multi-layer perceptron neural 
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network that uses load and weather data have been applied in order to forecast the daily 

load of a suburban area. Feed forward artificial neural network for hourly demand 

prediction have been also tested and the proposed algorithm is able to achieve a high 

prediction accuracy. 

ANN have been applied in task activities to generate a 24h load forecasting micro-grids 

with the purpose to predict the day ahead excess production and apply appropriate 

controls for its utilisation. 

2.2 Building modelling  

The analysis of energy consumption data is an important instrument for the buildings 

management: it is crucial for energy audits, to verify the savings achieved by a retrofit 

and to improve the estimation of expected savings. This aspect requires the knowledge 

of the factors that influence the energy consumption. Usually, a validated model of the 

building is necessary to estimate the consumption for any operating conditions. 

There are two approaches for developing such a model: the “simulation approach”, also 

called “forward modelling”, and the “system identification” approach, called “inverse 

modelling”. A third option, which can be also considered, is a hybrid approach: by starting 

with the description of the building and calibrating the simulation program for matching 

with the measured consumption data. 

Energy model-based simulation requires computational tools that allow a proper 

modelling of the dynamic thermal interactions between a building and its outdoor and 

indoor environments. This approach is based on a deep understanding of the behaviour 

by starting from established relationships. On the other side, conducting energy model-

based simulation requires significant time, resources, technical expertise and an 

extensive set of inputs to characterize a building (geometry, internal loads, outdoor 

environment, equipment, and schedules), which limits their application. Usually, sufficient 

resources are missing and the soft relationship between design and analysis tools does 

not permit rapid energy model iteration.  

The system identification approach, is based on the behaviour of the building 

(consumption data, outdoor temperature, etc.) by assuming the structure of the model 

and identifying its parameters through a statistical analysis of data collected. The 

simplest option is to assume a steady-state model of the building and use data related to 

consumptions, weather conditions, etc. This leads to what is known as energy signature 

(ES). The energy signature of a building represents a set of parameters that describe its 
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energy performance by using few equations; however, a sophisticated statistical process 

is mandatory to make the results as reliable as possible. A very positive aspect with 

respect to the simulation approach, is that only data easy to obtain without a dedicated 

data acquisition system are required. In the literature, a classical method used for energy 

signature is PRISM model, a regression of consumption with respect to external 

temperature. But other factors can also be important, such as solar radiation, wind 

velocity and occupancy/operating mode that are particularly relevant for industrial 

buildings (unoccupied during holidays and weekends) which behaviour is obtained with 

two separate models: one for heating and the other for cooling period. 

In the literature, numerous works have confirmed that the outdoor temperature is the 

central factor for buildings whose loads are dominated by heating. Energy signatures for 

air conditioning systems can have characteristics that are different with respect to heating 

systems so the assumptions can be very different.  

Starting from common measurement that are easily collected in a smart building like 

external temperature, wind, the internal temperature, it is possible to by-pass the 

simulation model, and directly obtain estimation of load that can be used to tune and 

optimize renewable production (see Figure 2). This methodology has been applied to the 

NTL building at the Cyprus Institute in Nicosia. The simplified model, obtained by the 

statistical analysis of the available data, gives the overall heating/cooling with respect to 

external temperature, and it may be used to estimate the energy consumption for data 

sets of the outdoor temperature coming from different time—space locations with an 

acceptable error for a preliminary analysis. These data have been uploaded in the Trnsys 

model the building connected to the LFR collector, which were already available, as to 

understand their possible behaviour as smart grid. For this reason, improvements via 

advanced control and data mining techniques for energy predictions have been also 

taken into consideration. 
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Figure 2: Energy signature conceptual schema 

 

2.3 Battery Energy Storage Systems (BESS) 

The increasing share of intermittent renewable energy sources and more distributed 

generation are requiring more and more flexibility. In this view, solutions such as storage 

systems and demand response strategies can provide such flexibility. The study has 

been primarily referred to the perspective in UK, as the possible application has been 

considered at the Brunel University in London. Hereby, the main findings about the 

scenario are briefly reported. 

2.3.1 UK scenario  

The current scenario in the UK is massively changing due to three main factors: 

1) large-Scale deployment of wind power: the UK has 8.3 GW of operating onshore 

wind capacity and 5.1 GW of offshore capacity; such a capacity is supposed to rise 

up to 44.6 GW by 2050; 

2) distributed generation; 

3) closure of large conventional generation plant: the Large Combustion Plant Directive 

(LCPD) and the Industrial Emissions Directive (IED) issued by the European Union 

have caused the reduction of 9 GW of coal-fired capacity installed since 2011; 

4) changing demand profile: in order to reduce greenhouse gas emissions, heat and 

transport are going to be part of a massive electrification process that will cause a 

significant increase in peak demand on the system. 

These trends, among others, are affecting the system as: 

a) balancing supply and demand: in order to ensure the network stability, supply is 

reduced or increased based on the demand; however, some production process 
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operates at a flat level of baseload generation in order to reduce emission, thus, they 

are unable to increase output; 

b) maintaining adequate capacity margin: in the medium and long term, the capacity 

margin could be maintained through the capacity mechanism; 

c) increasing need for flexibility to ensure system reliability: this requires quick and 

reliable systems that constantly ensure the required flexibility; 

d) reduced efficiency of conventional plants: the high penetration of RES pushes 

conventional plants further down the merit order. Plants must provide quicker ramps, 

more start-ups and greater overall cycling; consequently, maintenance costs 

increase as well as environmental impacts due to lower efficiency and higher 

emission per unit output; 

e) localised distribution network impacts: massive distributed generation can cause 

congestion in a distribution network designed to passively distributed power from the 

transmission system to the end customer.  

 

In this evolving context, storage systems can operate in different market across the 

electricity system to provide multiple services to multiple stakeholders as shown in Table. 

 Response 
Service 

High energy 
user 

Domestic, 
Nondomestic,   
Community 

Energy 
Reserve 

Energy 
Trader 

Primary 
Service 

Enhances 
Frequency 
Response 
(EFR) 

Transmission 
Cost avoidance 

Generator own 
use 

STOR or Fast 
Reserve or 
Capacity 
Market 

Price 
arbitrage and 
peak shaving 

Additional 
revenues 

Firm 
Frequency 
Response 
(FFR) 

Distribution cost 
avoidance 

Aggregated own 
use 

Transmission 
cost avoidance 

Aggregated 
price 
arbitrage 

 Capacity 
market 

Peak-shaving Price arbitrage 
and peak 
shaving 

Distribution 
cost avoidance 

Grid 
Curtailment 

Transmission 
cost avoidance 

Frequency 
control  

Grid Curtailment Price arbitrage 
and peak 
shaving 

 

Distribution 
cost avoidance 

Generator own 
use 

Frequency 
response 

 

 UPS STOR or 
Capacity Market 

Table 2: Main storage applications in the UK  

2.3.2 Worldwide scenario 

With reference to batteries, many countries are focusing on battery installations.  

The scenario described in the previous chapter related to UK, is very similar to what is 

happening in Germany as shown in Figure 3.  Behind-the-meter installations are located 
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at customer’s site and, in this specific case, they are con Commercial & Industrial 

customer.  The large number of installations with more than 1 MWh of capacity installed 

is mainly given by the fact that batteries can provide multiple services for grid regulation 

at the same time. 

 

Figure 3: Battery storage deployment in UK & Germany 

 

Considering about 1,636 storage projects installed worldwide and 193,349 MW of power, 

electrochemical technologies involve about 993 projects and 3,279 MW; among those 

installations, lithium technology have been deployed in about 631 project with 2,289 MW 

installed. 

Many governments have also supported actions to improve the deployment of energy 

storage not strictly related to batteries, though (see Table). 

 

Country  Organisation and Overview  

Canada Ontario Ministry of Energy  

 In 2013, the government released a Long-Term Energy Plan, which included 
procurement target of 50MW for storage technologies. The LTEP has targets of 
10,700MW of wind (11%), solar (3%) and bioenergy (3%) by 2021 (each source 
representing their percentage of total energy production). 

China Central Government 

 There have been funding for demonstration projects such as the Zhangbei project in 
Hebei, which has 36KWh lithium-ion battery capacity, in order to evaluate the value 
energy storage would have when providing electricity grid flexibility.  

 The National Energy Administration (NEA) is expected to release 13 energy policies in 
2015, which include large capacity energy storage and EV charging infrastructure.  

 It is anticipated in 2015 that the National Reform and Development Commission will 
implement time-of-use pricing mechanisms. 

European 
Union 

European Commission – Framework Research Programme  

 The ‘stoRE’ project, co-funded by the Intelligent Energy Europe Programme of the EU, 
aims to create a framework that will allow energy storage infrastructure to be 
developed in support of higher penetration of variable renewable energy resources. 
Target countries to identify a series of improvements/application include, Austria, 
Denmark, Germany, Greece, Ireland and Spain. 

Germany Federal Ministry of the Environment, Nature Conservation and Nuclear Safety  
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 Since May 2013, part of the support scheme for solar-plus-batter, the state-owned 
bank Kreditanstalt für Wiederaufbau (KfW) has granted low interest loans with an 
aggregate value of €163 million for 10,000 energy storage projects combined with PV 
installations with a power up to 30kW.  

 The Ministry also covers 30% of the storage system costs. Eligible PV systems should 
feed maximum 60% of installed capacity into the grid. 

Japan Ministry of Economy, Trade and Industry  

 Government support to demonstrate the ability to time-shift demand by 10% in 14 
conjunction with expanded use of renewable generation resources. Within the next 
seven years METI funding is aiming to decrease the total cost by providing funds up to 
75% of the total storage system cost.  

 METI is planning to spend around 81 billion yen to resolve grid related issues and to 
increase renewable energy. Additionally, the Ministry is aiming to provide incentives for 
energy storage systems, which can be implemented onto solar power stations or 
substations. The budget is awaiting parliament approval.  
Ministry of Environment  

 Up to 50% subsidy for storage battery for renewable energy generation (1MW) 

 Subsidy for renewable energy in local areas (Total 1bn JPY) 

South 
Korea 

Ministry of Trade, Industry and Energy (MOTIE)  

 Customised electric rates to stimulate the energy storage system and electric vehicle 
industries along with drawing investment in storage and the use of ecofriendly EVs by 
consumers (MOTIE, 2015).  

 The government plans to install 500kWh of energy storage systems. The Korea 
Electric Power Corporation also plans to install 1000kWh of storage (Agency for 
Growth Policy Analysis, 2014).  

 MOTIE also supports small and mid-sized companies with various incentives to install 
energy storage systems.  

 Central Government  

 President Park has expressed support for innovative energy systems, which includes 
the usage of ES within Energy Management Systems and smart grids. 

United 
States 

Storage Technology for Renewable and Green Energy Act of 2013 or the Storage 
2013 Act  

 Similar to the Storage Act of 2011 this act promotes deployment of energy storage 
technologies by recognising the benefits for renewables and consumers and benefits 
to the grid. The Act aims to level the playing field of energy tax incentives (U.S. Senate 
Committee, 2013).  

 The Act provides 20% investment tax credit of up to $40 million per project connected 
to the electric grid and distribution system. Additionally, the Act provides 30% 
investment tax credit of up to $1 million per project to businesses for on-site storage 
(ibid).  

 An important change from the Act of 2011 is that the minimum size of system eligibility 
had been lowered from 20kWh to 5kWh. This change helps promote deployment of 
systems from small businesses to the grid and it is expected to incentivise storage 
companies to create leasing models for residential users (ibid).  

 The Act also provides 30% tax credit for homeowners for on-site storage systems to 
store off-peak electricity from solar panels or from the grid for later use (ibid).  
Federal Energy Regulatory Commission (Orders)  

 Order 755 increases the pay for “fast” responding sources like batteries or flywheels 
that are bidding into frequency regulation service markets. “Fast-ramping, more 15 
accurate resources are now given greater compensation in the wholesale frequency 
regulation markets” (DOE, 2015). The FERC is ensuring that it’s providing just and 
reasonable and not unduly discriminatory or preferential rates of frequency regulation.  

 Order 784 expands Order 755 and focuses on third-party provision of ancillary services 
and accounting and financial reporting for new electric storage technologies (ibid). 
According to the Order public utilities must take into account the speed and accuracy 
of regulation resources, which opens the door for greater efficiency in transmission 
customers' purchase of regulation resources. Additionally, the order eases the barriers 
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for third-party entry into ancillary service markets and by revising accounting and 
reporting requirement to improve market transparency.  

 The incentives for systems that provide summer on-peak demand reduction are 
$2,600/kW for thermal storage and $2,100/kW for battery storage technologies (ibid). 
Proposed incentives are capped at 50% of installed project cost plus bonus incentives 
are available for large (>500kW) projects.  
Master Limited Partnerships Parity Act  

 A Master Limited Partnership (MLP) "is a business structure that is taxed as a 
partnership, but whose ownership interests are traded like corporate stock on a 
market” (Library of Congress, 2013). However, it has only applied for fossil fuel based 
energy partnerships within the internal revenue code.  

 The MLP Parity Act “Amends the Internal Revenue Code, with respect to the tax 
treatment of publicly traded partnerships as corporations, to expand the definition of 
"qualifying income" for such partnerships to include income and gains from renewable 
and alternative fuels (in addition to fossil fuels), including energy derived from thermal 
resources, waste, renewable fuels and chemicals, energy efficient buildings, 
gasification, and carbon capture in secure geological storage” (Lib. of Cong., 2013).  

 The MLP Parity Act expands MLP eligibility to an array of renewable energy sources, 
including "electricity storage devices" (DOE, 2015). If the Act is enacted, it will allow for 
more equitable taxation methods across all energy sectors, and will allow for new 
ownership and taxation models for energy storage device partnerships (ibid).  

 MLP Parity Act was introduced in 2012 and then in 2013 (with expanded qualifying 
resources) and still awaits approval. 

Table 3: Examples of international government action to support energy storage 

 

2.3.3 The Success of Lithium Technology 

Nowadays, lithium batteries are mostly deployed for grid regulation and integrated with 

renewables. As the lithium prices are going down, even though they are not as affordable 

as other battery technologies, the technological maturity of such batteries cause high 

performances that are required from most of the recent tenders worldwide.  

The main advantages of the lithium technology, reported by the literature are: 

 mature technology; 

 modularity and scalability; 

 power Intensive; 

 high performance. 

While, the disadvantages are mostly related to the, still, high prices. 

 

2.3.4 Integration of BESS in built environments 

The union between BESS and buildings typically defines two scenarios referring to Table: 

(i) Domestic, Non-domestic and Community; (ii) High energy users. 

 

2.3.4.1 Domestic, Non-Domestic and Community 

A BESS can provide a variety of services when integrated with domestic, nondomestic 

buildings and communities as reported in Table 4. Primary service denotes the main type 
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of services that an electrical storage can provide when integrated in building applications, 

while, additional revenues represent other services that the BESS can simultaneously 

provide. Domestic, non-domestic and community include residential, industrial, office, 

and other types of buildings or group of buildings.  

 Domestic, Non-Domestic & Community 

Primary Service Generator own use 

Additional revenues Aggregated own use 

 Price arbitrage and peak shaving 

 Grid Curtailment 

 Frequency response 

 STOR or Capacity Market 

 
Table 4: Domestic, Non-Domestic and Community BESS Applications 

 

Generator own use 

The energy to satisfy the energy demand in a single building or a group of buildings, also 

defined as community, for both domestic and nondomestic cases, is typically taken from 

the national grid. However, it is also possible to use the energy used by Renewable 

Energy Sources on site, in case of prosumers. Another option is then a diesel generator. 

On the other hand, a storage system enables such users to withdrawn the required 

energy from it whenever necessary. This scenario characterizes off-grid solutions where 

the union of RESs, storage systems, loads, and a possible back-up diesel generator, 

guarantee the balance of energy demand and supply.  

Aggregators 

Buildings and community easily fit in being aggregated in both demand and response. In 

this scenario, the aggregators balance the energy consumption and production within the 

aggregated buildings in order to minimize any imbalances. Storage systems boost 

aggregation because they provide flexibility aimed to enhance the internal energy 

balance that aggregated buildings ask for.  

Price arbitrage and peak shaving 

Storage systems enable users to store the extra energy produced by renewables or 

bought at low prices, and then use it when prices are high. Moreover, peaks in 

consumption can be shaved by withdrawing energy from the energy storage. Both 

strategies yield to savings for the customers and support grid stability. 
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Grid Curtailment 

In this situation, the energy produced by a wind farm is curtailed at certain times. Clearly, 

this loss of energy can be mitigated by storing it in a storage system and then withdrawn 

into the grid whenever is possible. 

Frequency response, STOR and Capacity market 

As the grid frequency must be secured at 50 Hz as long as possible, TSOs are 

addressing storage systems that improve grid stability by providing and absorbing power 

from the grid if required.  

In this view, National Grid (the TSO in the United Kingdom) have issued in 2016 a tender 

for the Enhanced Frequency Response (EFR) service. In such tender, 61 offers involved 

battery storage systems, while 2 were Demand Side Response (DSR) and 1 was a 

thermal generator. The eight projects that have won are shown in Figure 4: EFR Results. 

 

Figure 4: EFR Results 

 

The success of lithium storage deployment in the EFR tender is related to the sub-second 

response times that NG required. The success of such tender was also given by the fact 

that tenderers can deploy the battery systems for multiple services at the same time. 

Clearly, this yields to an increase in revenues through the following market mechanisms: 

a. Imbalance market: imbalance prices are supposed to reach 6000 £/MWh in times 

of system stress. Flexibility can, then, be a crucial future revenue stream. 

b. Capacity Market (CM): National Grid buys capacity ahead of delivery. Market 

participants can bid for contracts in auctions held four years ahead of the delivery 

date, even if longer term agreements (15 years) are available for new plant, to 

encourage investment in new generation assets. Generators, CHPs, electricity 

storage systems, interconnectors, and DSRs can participate to the capacity market. 
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Participants are notified, usually, four hours ahead of the required delivery time and 

further information related to the settlement period and the percentage of their total 

obligations are provided as well. 

c. Embedded benefits: triads are supposed to be removed by 2020 and this may 

provide benefits in the long term.  

 

Figure 5: Revenue build up. 

 

2.3.4.1 High Energy users 

High Energy users, most likely to be related to the industrial and commercial sectors, are 

subject to high payments if they have peaks in consumption.  

The main goals for such energy users, related to the deployment of storage systems 

might be: 

1. Transmission and Distribution Costs Avoidance 

The reduction of the energy withdrawn from the grid and the power peak causes 

a decrease in the transmission and distribution costs for the users. 

2. Peak shaving 
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Governments in the UK, and many countries in Europe, are supporting users 

setting an upper limit in their annual consumption. By guaranteeing their maximum 

consumption below such threshold, users avoid payment peaks and TSOs provide 

more stability to the grid.  

Peak shaving strategies involve software and hardware solutions, such as storage 

systems and diesel generators.  

As UK is highly addressing peak reduction in high energy users, Germany has 

dealt with this years ago with the STROMNEV legislation; in such scenario, many 

industrial consumers were attracted by high savings and, firstly, decided to look 

for solutions such as diesel generators integrated with storage batteries. However, 

due to the uncertainty of such law, few investments have been finalized for peak 

reduction, as consumers were reluctant to invest thousands of euro for a law that 

could have been canceled the following year. 

3. Increase self-consumption of the renewable energy produced 

High energy users that have installations of Renewable Energy Sources (RESs), 

might be interested in increasing their deployment through storage systems. This 

will yield to a reduction in the amount of energy withdrawn from the national grid.  

4. Uninterruptible Power Supplies (UPS) 

Batteries can also operate as UPS when it is not possible to withdraw power from 

the national grid due to failures and breakout.  

5. Frequency Control 

In many countries, like in the UK, batteries can provide multiple services at the 

same time. In this view, storage systems can also provide services for grid 

regulation and, so, increase the revenue streams.   

6. Generator own use 

Batteries can easily act as generators whenever they are charged. 

 

2.4 Combined geothermal and solar thermal energy storage systems  

The combination of geothermal and solar thermal energy systems may support the 

achievement of the highest efficiency possible in heating and cooling renewable based 

plants. The main energy source is the thermal solar field, which takes the heat from solar 

energy and the ground source heat pumps, which energy is extracted from boreholes on 

the ground, and can be used for heating, cooling and storage purposes. The excess 
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energy can be stored under the ground to preserve it until needed. 

As a matter of fact, the solar source can usually generate much more energy than with 

geothermal, but its main drawback of this kind of renewable energy is the lack of 

constancy in the extraction, since the sun is not shining at night and during the non-sunny 

days. The adoption of the sole geothermal energy has some inconveniences as well. For 

example, the efficiency of the system will decrease with time, as the ground temperature 

cools down because of its energy use. 

The two sources can be associated to solve the drawbacks they individually have. Most 

of the time during the year, the solar energy warms the flowing water at higher 

temperature than needed for heating the building. In order to not waste the surplus of 

water temperature, the solar system pipes can be redirected to the borehole. This way, 

the warm water will heat up the ground, letting the geothermal system be able to extract 

more energy, as well as keeping the ground temperature from cooling down. In the 

periods when the water circulating through the solar system has similar temperature as 

the needed for the building thermal needs, this energy will be used directly to heat up the 

heating system. That means, the solar system will have more than one direction, one 

towards the borehole, other to heat pump and a final one directly connected with the 

space heating system. 

The parameters to consider regarding the building are mainly the heating, cooling and 

electricity consumption. In the case study of the K2 building of the Environmental 

Engineering Department in TUC, this information can be taken from the existing 

simulation of the model building K1 in OpenStudio software, which has similar 

characteristics as the object of study. The model contains the same external and internal 

dimensions of the real building, as well as, all the distribution, installations and facilities, 

so that the data obtained will be reliable. To simulate the model,  a heating and cooling 

temperature set point is defined, so when a certain room temperature increases above 

the specified degree in the case of cooling, or below in the case of heating, the HVAC 

system will switch on and consume energy. In this way, the thermal energy consumption 

is calculated. 

About the climate conditions, the daily average temperature and the sun irradiance will 

be useful when dimensioning the solar thermal collectors. The data have been acquired 

from the Photovoltaic Geographical Information System (PVGIS), which also provides 

the average optimal inclination angle of the collector, for having the maximum efficiency 
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possible at the specific location. 

It is also necessary to study the geology of the area, for knowing the characteristics of 

the terrain below the ground surface and its different strata. This data will be useful when 

dimensioning the borehole heat exchangers for the geothermal energy extraction and 

storage. The information will be taken from the ThermMap, an Interactive Online Platform 

that provides the average thermal conductivity and heat capacity of the ground, among 

other parameters. 

Once all the data are gathered, the dimensioning of the energy sources is performed. 

The geothermal boreholes extract energy from the ground, so the potential of this source 

decreases with time, as the more heat is drawn out, the faster the ground is cooled down. 

For overcoming this fact, the part or all the energy obtained (depending on the needs) by 

solar collectors will be redirected to the borehole in order to maintain the temperature of 

the ground above certain level, as well as, serving as the heat source for the 

Underground Thermal Energy Storage. 

The solar collectors have been dimensioned taking into account the heat consumption 

needed to be extracted from the boreholes. For that, the collector type is specified and 

the thermal energy produced is calculated considering the collector parameters 

(efficiency and area) and the climate conditions (solar irradiance). 

For the dimensioning of the geothermal boreholes, the GeoT*SOL software has been 

utilized, which simulates the Borehole Heat Exchanger (BHE) system and specifies the 

best configuration, the number of boreholes needed, heat produced and energy 

consumed by the heat pump. After energy sources dimensioning, the final conceptual 

design of the system combining both energy sources connected with the Space 

Conditioning System is presented, followed by a description of the systems functioning 

and different modes of operation.  

 

2.5 Design of a platform for monitoring and controlling building 

integrated solar polygerenation systems  

A research-to-market applicative approach has been adopted, starting from the results 

that TUC obtained in terms of data collection infrastructures and processing algorithms 

based on ANN and fuzzy logic. Data models have been described, as well as the storage 

and calculation procedures. ARM processor based platforms have been considered 

porting the experimental architecture on a robust and scalable platform. The ARM boards 
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under consideration are adopting for Linux OS that allows the adoption of rapid, 

affordable and robust development environments. 

Once an open framework for sensing and controlling has been designed, a pilot porting 

activity has been operated in order to validate the envisaged approach. 
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3. Optimised Operation of Renewables for Smart Grids          

3.1 Energy forecast at the Brunel University London 

Brunel University London is a medium-sized university based in Uxbridge on the outskirts 

of London. Formed in 1966, it has grown steadily through the incorporation of additional, 

colleges and further education providers, but retains an emphasis on engineering, 

science and technology. Today, it numbers around 15,000 students and 2,000 staff.  

The campus (see Figure 6) is composed by three different type of buildings: 

 Residentials, with ten residential complexes, each one of them composed by a 

variable number of buildings. 

 Academic, with almost twenty buildings consisting of halls, offices, labs and 

libraries. 

 Social, including sport centers, art centers, cafes and restaurants. 

For what concerns the electricity supply, the whole campus is directly connected to the 

national grid. There are some production plants (both solar and wind) also connected to 

the national grid. Hot water and heating systems are fed by a gas system, so electricity 

is used for lighting, cooling and for electrical devices supply.  

In 2011 a system of 21 meters has been installed within the campus. Each meter records 

every 30 minutes data about electricity consumption of one or more buildings.  

Data provided, is related to electricity consumption recorded by each meter distributed 

at the campus of Brunel University London from 8th of February 2011 to 31st of March 

2017. 

Data are recorded every 30 minutes, 24 hours a day (48 samples per day). Each meter 

is connected to one or more neighbouring buildings. In Figure 7 different meters records 

are plotted. As it can be noticed, loads can vary a lot according to the number of buildings 

connected to the meter, and to their use.  

The highest consumption is recorded by the “CBS 1” meter, its main contribution is given 

by Hamilton Centre, a complex that hosts most of restaurants and social area.  

On the other hand, the lowest contribution to the electricity demand is given by the 

“Health” meter, related to Mary Seacole building, including gyms, art rooms, laboratories, 

observation rooms and work rehabilitation rooms.  
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Figure 6: Brunel University London Campus Map 
  

 
Figure 7: Electricity consumptions recorded by meters 

 

3.1.1 Data preparation 

Before proceeding to the development of the forecast model, data collected have been 

“prepared” for the analysis. In particular: 
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 outliers have been detected and replaced by the average value of the time series 

 missing values have been filled through linear interpolation 

 periods during which data from particular meters are not available have not been 

included in the analysis. 

Once the data of each single meter were ready to be analysed, they have been summed 

and the total amount of electricity consumption was studied. Further steps of this work 

will include a separate analysis of the consumption profiles differentiated for each meter. 

In Figure 8 the total electricity demand is shown. 

 

Figure 8: Total electricity consumption 
 

Some preliminary considerations can be made by observing the plot: 

 There is a clear annual seasonal profile.  

 During summer period, when classes are stopped and many students are out for 

holidays the electricity demand is lower. 

 During winter holidays (around from 24th of December to 5th/6th of January) a 

steep decrease of electricity consumption is observed possibly due to Christmas 

holidays. 

 Data relative to 2017 show a deceptive decrease of consumption. It is actually due 

to missing measurements of some meters. For this reason, as mentioned before, 
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data of 2017 have been removed from the dataset in order to not affect the model 

with systematic errors. 

For the dataset preparation and this first data exploration of the programming language 

Python was employed. 

 

3.1.2 Forecast 

To predict future values of energy consumption data, a preliminary study of the behaviour 

of the campus have been performed. Once evaluated the main characteristics of the 

electric demand trend over time, two forecasting models have been implemented and 

evaluated: ARIMA and Exponential Smoothing. Their analysis is performed using R 

programming language.  

 

3.1.2.1 Yearly, weekly and daily profiles 

The dataset of the total electricity consumption from February 2011 to December 2016, 

has been used to develop the forecast model.  

In addition to the annual trend of the electricity consumption, in Figure 9 overlapping 

annual profiles are shown.  

 

Figure 9: Annual trends over time (seasonal plots) 
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Early observations can be confirmed by observing the seasonal plot: trends repeat over 

the years, there is a decrease of the consumption during the summer vacations and a 

steep drop is observed in Christmas holidays. 

In order to better understand the characteristic behaviour of the campus and to analysing 

at different depths the trend over time of the demand, median daily and weekly profiles 

have been produced. In Figure 10 and Figure 11 the median pattern and the Median 

Absolute Deviation (MAD) are shown. 

From the daily profile an increase of the demand in the first half of the morning (from 7 

a.m. to 10 a.m.) is evident and then the profile remains almost flat until the evening 

(around 8 p.m.). Such a profile can be justified as the combined result of the residential 

buildings demand- which have a predominant request in the early morning when students 

wake up and in the evening- and the academic and social buildings- which have a 

predominant consumption in the central part of the day. 

In the median weekly profile the difference between the working days and the weekend 

is very clear. For the working days in fact the profile is higher and shows an increasing 

pattern in the morning, with a peak occurring around 12 a.m. and a decreasing pattern in 

the second part of the day, with a minimum recorded during the night around 4 a.m. 

As it can be expected, during Saturday and Sunday the request is lower and the daily 

peaks are delayed to the late evening (around 19 p.m.).  

 

Figure 10: Median daily profile. 
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Figure 11: Median weekly profile. 

 

 

3.1 Athalassa Campus and NTL building 

The Fresnel technology started to be part of a grid, composed by several buildings of 

Athalassa campus (adjacent to Franco Cypriot School) within Aglantzia Municipality in 

Nicosia, where Cyprus Institute is located. The Cyprus Institute started to add non-used 

buildings at the Campus to expand its research activity with needed laboratory and office 

space. The renovation and extension work commenced at the end of 2014. 

The main facilities within the Campus are: 

 The Guy Ourisson Building (2007): the first renovated building of CyI that includes a 

mixture of offices (for faculty, researchers and administration), seminar and conference 

rooms as well as auxiliary common areas, a small number of research laboratories, office 

space for students and a students’ common area. 

 The Novel Technologies Laboratory (2014): it is designed as a "green building", using 

specific standards that allow it to be a near zero energy building. The Laboratory hosts 

offices and laboratory teams from the Energy, Environment and Water Research Centre 

and is equipped with latest technology equipment for scientific research. 

 The Cy-Tera, CyI’s High Performance Computing Facility (2012): one of most powerful 

Supercomputers in the region used for scientific research. The Building includes office 

space for the researchers and the technical team.  
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 STARLab Laboratory: research infrastructure for the scientific research, documentation 

and preservation of the cultural heritage of Cyprus. The Facility includes both a fixed and 

a mobile laboratory. 

 

Figure 12: Athalassa campus and energy grid schema 

Activities initiated with a preliminary focus on the campus by considering the buildings as 

load (consumption) or production nodes that compose the smart grid. Smart Grids 

provide the integration of traditional and renewable energy resources, with new elements 

in a distributed, open, and self-managed way. Innovative models for energy infrastructure 

and the self-management of the power grid are required, suitable for open and distributed 

infrastructures. Such a shift would ensure the scalability of smart grids and enable the 

management of autonomous operations throughout the power network.  

In this context, we consider the existing integrations between two nodes of the Athalassa 

Campus “potential” grid, as the Novel Technologies Laboratory (NTLB) and Linear 

Fresnel Collector with thermal storage. The system is constituted by a Fresnel solar 

collector, an oil buffer storage, a heat exchanger to generate hot water and a single stage 

chiller to be integrated with the existing HVAC units. The solar collector has been 

designed by Idea Srl and it is implementing the possibility to install PV panels on the back 

of the primary optics, to produce electricity when the direct solar radiation is poor. 

The aim of the Linear Fresnel Collector is to explore the opportunities offered by solar 

poly-generation for Near to Zero Energy Buildings and maximize the utilization of the 

collected solar energy. The research activities during the first year of Smart GEMS have 

been devoted to the study of the main issues emerging in such a kind of integrated 

system and, specifically, on tuning, liability, automation, building integration and 

hybridization with the in-place air conditioning systems. 
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NTLB with a Linear Fresnel Collector and combined HVAC systems has been assessed 

in terms of minimization of consumption and full exploitation of solar plant integration. In 

addition, dynamic modelling and evaluation of Concentrated Solar Power (CSP) 

technology and in specific, the IDEA FRESCO system was investigated as a solution for 

integration in Near Zero Energy Buildings (NZEBs) and smart grids.  

A model of the Fresnel System was developed and exploited to fully understand the 

operational phase and coupling possibilities of such systems. In such context, the goal is 

to give an overall estimation of energy consumption by using a data driven model 

obtained with the data collected in Novel Technology Laboratory. 

 

Figure 13: Fresnel and Thermal loop Trnsys model 

 

 

Figure 14: Simulation model vs Data Driven model of NTLab 
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3.2.1 Correlation with weather data 

Data analysis general methodology is composed by several fundamental steps including 

problem definition, data exploration and data preparation, and finally data analysis 

through the test of several algorithms, related to supervised and unsupervised 

techniques. 

Data preparation has been obtained through Microsoft Excel and Labview software 

environment while algorithms used for data analysis have been developed in Python 

programming language. 

 

 

Figure 15: Flow chart of Energy Signature generation 

 

In this case, we decided to employ regression analysis in order to model its relationship 

among energy load, external temperature, and other collected data.  

Then, we try to predict the outcome (Y) based on values of a set of predictor variables 

(Xi) by using regressive method. 

Regression analysis is widely used for prediction and forecasting of a quantity and helps 

to understand how the value of the dependent variable changes when any one of the 

independent variables (or 'predictors') is varied, while the other independent variables 

are held fixed. The estimation target is a function of the independent variables called the 

regression function.  

These methods allow to assess the impact of multiple variables in the same model. In 

the literature, there are various types of regression analysis.  

We started from linear regression by adding each time a new (Xi) variable in order to 

better fit the (Y). Since, the first results with a linear model were not so good, non-linear 
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regression with Ridge technique was introduced to create a reliable model for predicting 

building consumption. 

 

3.2.2 Novel Technology case study description 

As previously introduced, Novel Technologies Laboratory mainly contains offices and 

laboratories in four levels; basement, ground floor, first floor and second floor. The 

basement encloses laboratories, WC and two offices. Ground floor is composed of the 

main lobby/entrance, two laboratories, six offices, a storage room, a small kitchen and 

WC. First floor has a lecture hall, five offices and a conference room, a small kitchen and 

WC. Second floor contains a laboratory, five offices, a kitchen and WC. 

The Novel Technologies Laboratory operates 8 hours/day, Monday to Friday and for 

about 240 days/year. 

The demand of energy in NTL has a distribution that is typical in hot countries. Figure 16 

shows the power demand required during a year: the red line indicates the average basic 

load demand (general appliances elevator, ventilation, hot water) the blue line artificial 

lighting, and the green line represents electricity consumption, in cold and warm months, 

to manage demand for heating and cooling. 

 

 

Figure 16: NTL Power demand  

 

Extract Transform Load procedures (ETL) started from “load demand” data and “meteo 

station” data that has been collected in two separates files with a different sample rate 

(Figure 17). 
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Figure 17: ETL procedure 

 

Sub-sampling procedures have been developed to be scalable and programmed in 

Labview platform (Figure 18).  

 

 

Figure 18: Re-sampling algorithm 

Another important aspect is to consider the correct timestamp in order to understand the 

real consumptions in operative settings. For this reason, we added several conditions 

related to working time, week end, and national holidays, in order to select only the most 

relevant data and exclude all data collected when the building is not fully operative. 

Moreover, we split in two datasets the original data, in order to obtain the two basic 

components of energy signature: one related the heating consumption, and the other one 

related to cooling consumption. For this reason, we consider both for 2015 and 2016 the 

period from January 01 to May, 01 and the period after November 14 for the heating data 

set and the other for cooling dataset. 
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We added another condition related to maximum or minimum external temperature, 

because, for a fully operative condition, during heating period the external temperature 

has to be minor than 25°C and during summer has to be higher than 25°C. While for the 

heating dataset we considered only the consumption of the Heat Pump, for cooling period 

we considered the sum among Heat Pump, Chiller 2 and Chiller 3. In Table all the added 

conditions are explained.  

Select working time Dataset from 9:00 am to 05:00 pm  

Delete week end day Delete all samples collected during Saturday and Sunday 

Delete National Holiday Delete all samples collected during National Holiday and expected 

vacation 

Heating variable 

HEATING (kW) 

-Time t>01/01/2015 and t<01/05/2015 or t>14/11/2015 

- Weather Temperature T <25°C 

HEATING (kW)=Heat Pump (kW) 

Cooling variable  

COOLING (kW) 

-Time 01/01/2015 < t<01/05/2015 or t>14/11/2015 

- Weather Temperature T >25°C 

COOLING (kW)=Heat Pump (kW) +Chiller 2 (kW) +Chiller 3 (kW)  

Table 5: Dataset filters 

The Final Dataset consists of 27 columns, corresponding to the observed variables, and 

a number of rows corresponding to the various samples collected, with 15 minutes, 

between 01/01/2015 and 31/12/2016 (Figure 19). 

Other two additional variables are added. One, called “orari”, is obtained by extracting 

single hour from timestamp. The other one, called “deltaT”, is obtained by calculating the 

difference between the average of internal and external temperature. 

 



 

645677 — SMART GEMS — H2020-MSCA-RISE-2014  
D4.1 Optimised Renewables’ Operation for Smart Grids: Monitoring and Control Strategies 

 

39 

Figure 19: Selected data set 

 

 

Figure 20: Training and test data set 

 

Finally, we split again the dataset in order to obtain the training data set completely 

different from the test dataset. Training set is a set of data used to discover potentially 

predictive relationships and test set is a set of data used to assess the strength and utility 

of a predictive relationship. Initial discovery of relationships is usually done with a training 

set while a test set and a validation set are used for evaluating whether the identified 

relationships hold. In this case, we have the whole 2015 as training set and 2016 as test 

set (Figure 20). 

The energy signature (heating and cooling consumption vs external temperature) of 

selected dataset with respect to the original dataset is shown in Figure 21. 

 

Figure 21: Energy Signature in terms of heating and cooling consumption vs external temperature 

January February March April May June July August September October NovemberDecember

January February March April May June July August September October NovemberDecember

TEST PERIOD

HEATING PERIODCOOLING PERIODHEATING PERIOD

2016

2015

TRAINING PERIOD

HEATING PERIOD COOLING PERIOD HEATING PERIOD
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Figure 22: Selected data set after ETL procedure 

3.2.3 Data exploration 

Data exploration is the first step in data analysis and typically involves summarizing the 

main characteristics of a dataset. Before a “prescribed” data analysis, we must know how 

many cases are in the dataset, what variables are included, how many missing 

observations there are, which is the average value and what general hypotheses the data 

is likely to support. An initial exploration of the dataset helps in answering these questions 

and familiarizing with the data. 

From this step, one can identify variables that are likely to have interesting observations. 

For example, by displaying the mean external temperature variable we can simply check 

if the two clusters for heating and cooling are appropriated and coherent with thermal 

conditions. In Table  and Table the information related to number of samples, mean 

value, standard deviation, min, 25%, 50%, 75% and maximum values are shown for each 

variable. 

 

Table 6: Data exploration for heating dataset. 

 

 

Table 7: Data exploration for cooling dataset. 

 

3.2.4 Correlation Matrix  

Pearson’s correlation coefficient between two variables is defined as the covariance of 

the two variables divided by the product of their standard deviations.  

Temperature 1st Floor (C) Temperature 2nd Floor (C) Heat pump (kW) Chiller 2 (kW) Chiller 3 (kW) PV power (kW) weather_temperature orari weekdays deltaT heating

count 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396 2396

mean 17.16255843 19.0924207 10.52388982 0.180033389 0.400617696 4.181619366 11.78800793 12.62 2.071368948 -6.3394816 10.5238898

std 1.51954765 1.846996587 6.967868963 0.200660285 0.01267361 4.191526521 3.814949122 2.36 1.392913156 3.8761798 6.96786896

min 11.73 12.51 1.04 0 0.36 0 0.593 9 0 -20.723 1.04

25% 16.31 18.15 4.04 0 0.4 0.12 9.4 11 1 -8.942 4.04

50% 17.11 19.41 7.84 0 0.4 2.84 11.78 13 2 -6.3415 7.84

75% 17.82 20.2 15.32 0.4 0.4 7.97 14.1685 15 3 -3.8895 15.32

max 23.01 23.95 36.16 0.44 0.44 13.68 19.907 17 4 3.66 36.16

Temperature 1st Floor (C) Temperature 2nd Floor (C) Heat pump (kW) Chiller 2 (kW) Chiller 3 (kW) PV power (kW) weather_temperature orari weekdays deltaT cooling

count 2362.000 2362.000 2362.000 2362.000 2362.000 2362.000 2362.000 2362 2362.000 2362.000 2362.000

mean 25.0292083 25.8142337 10.24733277 4.840321761 5.129077053 6.61703641 32.31518967 12.74 2.033022862 6.8934687 20.2167316

std 2.085831047 2.445781115 16.49763977 10.39229874 10.52949692 3.783842645 3.245778846 2.25 1.420999436 3.2185138 16.5229615

min 20 21.87 0.32 0.36 0.36 0 27.013 9 0 -2.297 1.12

25% 23.58 23.91 0.44 0.44 0.44 2.89 29.5485 11 1 4.61775 6.97

50% 25 24.94 0.44 0.44 0.44 7.5 32.307 13 2 6.56 16.02

75% 26.59 27.37 14.42 1.35 2.79 10.2 34.6115 15 3 9.21925 27.16

max 30.49 30.63 87.24 85.2 69.96 12.04 40.727 17 4 17.142 88.12
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Correlation is computed into what is known as the correlation coefficient, which ranges 

between -1 and +1. Perfect positive correlation (a correlation coefficient of +1) implies 

that as one variable moves, either up or down, the other variable will move in lockstep, 

in the same direction. Alternatively, perfect negative correlation means that if one variable 

moves in either direction the variable that is perfectly negatively correlated will move in 

the opposite direction. If the correlation is 0, the movements of the variables are said to 

have no correlation; they are completely random. 

In Table  and Table  corresponding to correlation matrices for both datasets, one can 

observe several levels of correlation.  

 

 

Table 8: Correlation matrix for heating dataset 

 

 

 

Table 9: Correlation matrix for cooling dataset 

 

About heating data set results obtained are: 

 Average correlated variables: Power Ground floor, Power 1st floor, and Light 2nd 

floor.  

 Weakly correlated variables: weather temperature, orari, delta T, Light basement, 

Light Ground floor, Light 1st floor, Chiller 2, Chiller 3, PV power.  

About cooling data set results obtained are: 

 Average correlated variables: Power 1st floor, Power 2st floor, Light 1nd floor and 

Light 2nd floor.  

HEATING

Temperature 1st Floor (C)Temperature 2nd Floor (C)Power basement (kW)Power Ground floor (kW)Power 1st Floor (kW)Power 2nd Floor (kW)Lights basement (kW)Lights Ground floor (kW)Lights 1st Floor (kW)Lights 2nd Floor (kW)Heat pump (kW)Chiller 2 (kW) Chiller 3 (kW) PV power (kW) weather_temperatureorari deltaT heating

Temperature 1st Floor (C) 1.00 0.73 0.09 0.22 0.25 0.11 0.12 0.20 0.15 0.19 -0.05 -0.13 0.19 0.00 0.16 0.13 -0.21 -0.05

Temperature 2nd Floor (C) 0.73 1.00 0.14 0.32 0.40 0.16 0.23 0.28 0.21 0.41 0.28 -0.29 0.13 0.06 0.15 0.06 -0.23 0.28

Power basement (kW) 0.09 0.14 1.00 0.23 0.09 0.54 0.46 0.05 0.05 0.29 0.25 0.20 -0.02 0.05 0.13 -0.02 0.07 0.25

Power Ground floor (kW) 0.22 0.32 0.23 1.00 0.43 0.18 0.23 0.20 0.09 0.56 0.54 -0.07 -0.02 0.18 -0.03 -0.28 -0.15 0.54

Power 1st Floor (kW) 0.25 0.40 0.09 0.43 1.00 0.03 0.14 0.14 0.14 0.40 0.48 -0.08 0.00 0.19 0.00 -0.28 -0.14 0.48

Power 2nd Floor (kW) 0.11 0.16 0.54 0.18 0.03 1.00 0.55 0.23 0.03 0.30 0.10 0.57 -0.06 -0.05 0.39 0.01 0.33 0.10

Lights basement (kW) 0.12 0.23 0.46 0.23 0.14 0.55 1.00 0.28 0.13 0.55 0.20 0.41 -0.03 -0.01 0.21 -0.06 0.13 0.20

Lights Ground floor (kW) 0.20 0.28 0.05 0.20 0.14 0.23 0.28 1.00 0.52 0.31 0.19 0.28 -0.14 -0.46 0.02 0.37 -0.08 0.19

Lights 1st Floor (kW) 0.15 0.21 0.05 0.09 0.14 0.03 0.13 0.52 1.00 0.16 0.15 -0.03 -0.09 -0.32 -0.07 0.34 -0.15 0.15

Lights 2nd Floor (kW) 0.19 0.41 0.29 0.56 0.40 0.30 0.55 0.31 0.16 1.00 0.43 0.16 -0.04 0.08 0.06 -0.21 -0.07 0.43

Heat pump (kW) -0.05 0.28 0.25 0.54 0.48 0.10 0.20 0.19 0.15 0.43 1.00 -0.10 -0.07 0.01 -0.12 -0.13 -0.18 1.00

Chiller 2 (kW) -0.13 -0.29 0.20 -0.07 -0.08 0.57 0.41 0.28 -0.03 0.16 -0.10 1.00 -0.11 -0.16 0.21 0.00 0.30 -0.10

Chiller 3 (kW) 0.19 0.13 -0.02 -0.02 0.00 -0.06 -0.03 -0.14 -0.09 -0.04 -0.07 -0.11 1.00 0.09 -0.03 0.05 -0.10 -0.07

PV power (kW) 0.00 0.06 0.05 0.18 0.19 -0.05 -0.01 -0.46 -0.32 0.08 0.01 -0.16 0.09 1.00 0.11 -0.74 0.09 0.01

weather_temperature 0.16 0.15 0.13 -0.03 0.00 0.39 0.21 0.02 -0.07 0.06 -0.12 0.21 -0.03 0.11 1.00 -0.11 0.92 -0.12

orari 0.13 0.06 -0.02 -0.28 -0.28 0.01 -0.06 0.37 0.34 -0.21 -0.13 0.00 0.05 -0.74 -0.11 1.00 -0.15 -0.13

deltaT -0.21 -0.23 0.07 -0.15 -0.14 0.33 0.13 -0.08 -0.15 -0.07 -0.18 0.30 -0.10 0.09 0.92 -0.15 1.00 -0.18

heating -0.05 0.28 0.25 0.54 0.48 0.10 0.20 0.19 0.15 0.43 1.00 -0.10 -0.07 0.01 -0.12 -0.13 -0.18 1.00

COOLING

Temperature 1st Floor (C)Temperature 2nd Floor (C)Power basement (kW)Power Ground floor (kW)Power 1st Floor (kW)Power 2nd Floor (kW)Lights basement (kW)Lights Ground floor (kW)Lights 1st Floor (kW)Lights 2nd Floor (kW)Heat pump (kW)Chiller 2 (kW) Chiller 3 (kW) PV power (kW) weather_temperatureorari deltaT cooling

Temperature 1st Floor (C) 1.00 0.81 -0.07 -0.04 -0.56 -0.06 -0.13 -0.47 -0.35 -0.59 -0.04 -0.22 -0.19 -0.09 0.37 0.16 -0.26 -0.29

Temperature 2nd Floor (C) 0.81 1.00 -0.12 -0.08 -0.52 -0.08 -0.15 -0.50 -0.33 -0.66 -0.13 -0.21 -0.22 -0.10 0.29 0.16 -0.35 -0.40

Power basement (kW) -0.07 -0.12 1.00 0.01 0.21 0.18 0.92 0.14 0.01 0.20 -0.04 0.21 0.21 0.10 0.23 -0.02 0.30 0.22

Power Ground floor (kW) -0.04 -0.08 0.01 1.00 0.07 0.07 0.01 0.07 0.02 0.07 0.09 0.03 0.05 0.06 0.00 -0.08 0.05 0.14

Power 1st Floor (kW) -0.56 -0.52 0.21 0.07 1.00 0.22 0.23 0.48 0.38 0.62 0.26 0.20 0.29 0.30 -0.04 -0.31 0.33 0.57

Power 2nd Floor (kW) -0.06 -0.08 0.18 0.07 0.22 1.00 0.16 0.22 -0.03 0.08 0.39 0.05 0.18 0.06 0.18 -0.07 0.23 0.54

Lights basement (kW) -0.13 -0.15 0.92 0.01 0.23 0.16 1.00 0.17 0.09 0.26 -0.03 0.20 0.16 0.10 0.17 -0.04 0.27 0.20

Lights Ground floor (kW) -0.47 -0.50 0.14 0.07 0.48 0.22 0.17 1.00 0.26 0.56 0.09 0.16 0.22 0.18 -0.14 -0.18 0.20 0.33

Lights 1st Floor (kW) -0.35 -0.33 0.01 0.02 0.38 -0.03 0.09 0.26 1.00 0.37 0.09 0.01 0.08 0.03 -0.21 -0.08 0.03 0.15

Lights 2nd Floor (kW) -0.59 -0.66 0.20 0.07 0.62 0.08 0.26 0.56 0.37 1.00 0.19 0.21 0.21 0.28 -0.19 -0.29 0.25 0.45

Heat pump (kW) -0.04 -0.13 -0.04 0.09 0.26 0.39 -0.03 0.09 0.09 0.19 1.00 -0.25 -0.26 0.11 -0.03 -0.15 0.03 0.67

Chiller 2 (kW) -0.22 -0.21 0.21 0.03 0.20 0.05 0.20 0.16 0.01 0.21 -0.25 1.00 -0.19 0.16 0.05 -0.13 0.20 0.26

Chiller 3 (kW) -0.19 -0.22 0.21 0.05 0.29 0.18 0.16 0.22 0.08 0.21 -0.26 -0.19 1.00 0.14 0.13 -0.14 0.28 0.26

PV power (kW) -0.09 -0.10 0.10 0.06 0.30 0.06 0.10 0.18 0.03 0.28 0.11 0.16 0.14 1.00 -0.07 -0.87 -0.01 0.30

weather_temperature 0.37 0.29 0.23 0.00 -0.04 0.18 0.17 -0.14 -0.21 -0.19 -0.03 0.05 0.13 -0.07 1.00 0.26 0.78 0.09

orari 0.16 0.16 -0.02 -0.08 -0.31 -0.07 -0.04 -0.18 -0.08 -0.29 -0.15 -0.13 -0.14 -0.87 0.26 1.00 0.15 -0.32

deltaT -0.26 -0.35 0.30 0.05 0.33 0.23 0.27 0.20 0.03 0.25 0.03 0.20 0.28 -0.01 0.78 0.15 1.00 0.33

cooling -0.29 -0.40 0.22 0.14 0.57 0.54 0.20 0.33 0.15 0.45 0.67 0.26 0.26 0.30 0.09 -0.32 0.33 1.00
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 Weakly correlated variables: orari, delta T, Light basement, Light Ground floor, Light 

1st floor, Chiller 2, Chiller 3, PV power.  

Obviously, both heating and cooling variables have a very strong correlation with Heat 

Pump (in the case of heating variable it is perfect). Instead, the cooling dataset is very 

weakly correlated with external temperature and for this reason a multivariable 

regression model is necessary to obtain more reliable results. 

 

3.2.5 Regression model 

The techniques for implementing regression analysis are several: parametric, such as 

linear regression and ordinary least squares regression, and non-parametric regression.  

Regression models are often fitted using the least squares method but they may also be 

fitted by minimizing the "lack of fit" in some other norm (as with least absolute deviations 

regression), or by minimizing a penalized version of the least squares loss function as in 

ridge regression (L2-norm penalty) and lasso (L1-norm penalty).  

In this case, as described in the previous paragraph, two arrays, x_train and y_train have 

been created: x_train is related to the independent variable, y_train is instead the 

dependent variable. 

The performance of regression analysis methods depends on the form of the data 

generating process, and how it relates to the regression approach being used.  

Scikit-Learn package in Pyton has been applied as machine learning tool. There are 3 

different APIs in Scikit-Learn to evaluate the quality of predictions of a model: 

 Estimator score method: Estimators have a score method providing a default 

evaluation criterion for the problem they are designed to solve.  

 Scoring parameter: Model-evaluation tools using cross-validation rely on an internal 

scoring strategy. 

 Metric functions: The metrics module implements functions assessing prediction 

error for specific purposes.  

In this work, regression metrics are used by considering several losses, score, and utility 

functions to measure regression performance. Some of those have been enhanced to 

handle the multi-output case: mean squared error, mean absolute error, explained 

variance score and r2_score. 

The r2_score and explained variance score accept an additional value 'variance 

weighted' for the multioutput parameter. This option leads to a weighting of each 
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individual score by the variance of the corresponding target variable. This setting 

quantifies the globally captured unscaled variance. If the target variables are of different 

scale, then this score puts more importance on well explaining the higher variance 

variables.  

 

3.2.6 Explained variance score 

The explained variance score computes the explained variance regression score. If 

𝑦𝑖 𝑝𝑟𝑒𝑑 is the predicted value and 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 is the corresponding true value, and Var is 

variance, the square of the standard deviation, then the explained variance is estimated 

as 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑝𝑟𝑒𝑑) = 1 −
𝑉𝑎𝑟 {𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑖 𝑝𝑟𝑒𝑑}

𝑉𝑎𝑟 {𝑦𝑖 𝑡𝑟𝑎𝑖𝑛}
 

Best possible score is 1.0. 

 

3.2.7 Mean absolute percentage error 

Another metric normally used to evaluate prediction accuracy of the regression model is 

the mean absolute percentage error (MAPE). It usually expresses accuracy as a 

percentage, and is defined by the formula: 

𝑀 =
100

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

where At is the actual value and Ft is the forecast value. 

The difference between At and Ft is divided by the Actual Value At again. The absolute 

value in this calculation is summed for every forecasted point in time and divided by the 

number of fitted points n. Multiplying by 100 makes it a percentage error. 

It cannot be used if there are zero values (which sometimes happens for example in 

demand data). 

3.2.8 Mean absolute error 

The mean absolute error function corresponds to the expected value of the absolute error 

loss or L1-norm loss. 

If 𝑦𝑖 𝑝𝑟𝑒𝑑 is the predicted value of the ith sample, and 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 is the corresponding true 

value, then the mean absolute error (MAE) estimated over n is defined as 

𝑀𝐴𝐸 (𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛
∑|𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑖 𝑝𝑟𝑒𝑑|

𝑛−1

𝑖=1

 

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score
https://en.wikipedia.org/wiki/Explained_variation
https://en.wikipedia.org/wiki/Variance
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
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3.2.9 Mean squared error and Root mean squared error 

The mean squared error function and root squared error computes mean square error 

and its root, a metric corresponding to the expected value of the squared (quadratic) error 

loss or root error loss. 

If 𝑦𝑖 𝑝𝑟𝑒𝑑 is the predicted value of the ith sample, and 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 is the corresponding true 

value, then the mean squared error (MSE) and the root mean squared error (RMSE) 

estimated over n defined as 

𝑀𝑆𝐸 (𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛
∑(𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑖 𝑝𝑟𝑒𝑑)

2
𝑛−1

𝑖=1

 

𝑅𝑀𝑆𝐸 (𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛
∑ √(𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑖 𝑝𝑟𝑒𝑑)

2
𝑛−1

𝑖=1

 

 

3.2.10 Median absolute error 

The median absolute error is calculated by taking the median of all absolute differences 

between the target and the prediction. 

If 𝑦𝑖 𝑝𝑟𝑒𝑑 is the predicted value of the ith sample, and 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 is the corresponding true 

value, then the median absolute error (MedAE) estimated over n is defined as 

𝑀𝑒𝑑𝐴𝐸 (𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑝𝑟𝑒𝑑) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦1 𝑡𝑟𝑎𝑖𝑛 − 𝑦1 𝑝𝑟𝑒𝑑|, … , |𝑦𝑛 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑛 𝑝𝑟𝑒𝑑|) 

 

3.2.11 R2 score function 

The R2 score function computes R², the coefficient of determination. It provides a 

measure of how well future samples are likely to be predicted by the model. It can also 

be interpreted as the amount of variation of the dependent variable explained by the 

regression equation. Best possible score is 1.0. A constant model that always predicts 

the expected value of y, disregarding the input features, would get a R2 score of 0.0. 

If 𝑦𝑖 𝑝𝑟𝑒𝑑 is the predicted value of the ith sample, and 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 is the corresponding true 

value, then the score R² estimated over n is defined as 

𝑅2 (𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑝𝑟𝑒𝑑) = 1 −
∑ (𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑖 𝑝𝑟𝑒𝑑)

2𝑛−1
𝑖=1

∑ (𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 −  �̅�)2𝑛−1
𝑖=1

 

where �̅� =
1

𝑛
 ∑ 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛

𝑛−1
𝑖=0   

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://en.wikipedia.org/wiki/Coefficient_of_determination
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3.2.12 Linear regression model 

The simple linear regression model to express the dependence of the expected response 

μi on the predictor xi can be written as 

𝑌 = 𝛽0 + 𝛽𝑖𝑥𝑖 

where β0 is called the constant or intercept, and represents the expected response when 

xi=0; βi is called the slope, and represents the expected increment in the response per 

unit change in xi.  

In this case, the sklearn. linear regression model developed for Python is used.  

The programming code used for linear regression calculates by default the intercept and 

obviously, the coefficients of the model, by fitting the model on the base of true training 

data x_train and target value y_train arrays, without any normalization. Once the model 

is fitted, we can obtain the predicted values array y_plot on the base of the linear 

regression model. A regression model example representing heating dataset (regreH1) 

is shown below.  

# Train the regrH1 model using the training sets 

regrH1= linear_model.LinearRegression() 

regrH1.fit(x_trainH, y_trainH) 

y_plotH1reg = regrH1.predict(x_trainH) 

In Figure 23 the linear regression model of training data, the x_train values vs the x_plot 

predicted value in the scatter plot for heating and cooling dataset are shown.  

 

Figure 23: Linear regression model with scatter plot of training data. 

 

As explained in the previous paragraph several metrics are calculated in order to quantify 

the accuracy of the model. As expected, the scores obtained from metrics in this case 
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are very low as you can see from Figure 23Σφάλμα! Το αρχείο προέλευσης της 

αναφοράς δεν βρέθηκε.. 

 

3.2.13 Multiple regression model 

In order to obtain a more accurate model, two different variables, are added in the x_train 

predictor, that in this case become a 3D-array with 3 columns: external temperature, orari 

and deltaT variables, (explained in the previous paragraph). This procedure is called 

multiple linear regression analysis and aims to establish a relationship between y=y_train 

array, that is the energy consumption variable (dependent variable) and the X=x_train(X1, 

X2, X3) predictor in the form:  

y=β0+ β1X1+ β2X2+…+ βnXn+ ε 

where X1=external temperature, X2=orari, X3=deltaT and β0 ... βn are the regression 

coefficients to be estimated based on a record of observations and ε is the error. This is 

normally done by curve fitting based on the least square method with the aim of 

minimizing the difference between the observed and estimated values. The last term in 

the equation (ε) is referred to as the residual (or fitted error) and is used for testing of the 

significance of each regression coefficient.  

 

3.2.14 Two variables linear regression 

As previously described, the linear regression model calculates by default the intercept 

and obviously, the coefficients of the model, by fitting the model on the base of true 

training data x_train, that in this case is a 2D-array – composed by external temperature 

and orari variables - and target value y_train arrays, without any normalization. Once the 

model is fitted, we can obtain the predicted values array y_plot on the base of the linear 

regression model in the form 

ypred= yplot =β0+ β1X1+ β2X2 

where X1=external temperature, X2= orari and β0 ... β2 are the regression coefficients to 

be estimated based on a record of observations. 

In Figure 24 the linear regression model is presented. In this case, we plot external 

temperature variable, vs the x_plot predicted value in the scatter plot of training data both 

for heating and cooling dataset.  
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Figure 24: Two variables linear regression model with scatter plot of training data. 

 

 

3.2.15 Three variables linear regression 

Three variables linear regression model calculates the intercept and the coefficients of 

the model, by fitting the model on the base of 3D - arrays – composed by external 

temperature, orari and deltaT variables - and target value y_train arrays, without any 

normalization. Once the model is fitted, we can obtain the predicted values array y_plot 

on the base of the linear regression model in the form:  

y_plot =β0+ β1X1+ β2X2 + β3X3  

where X1, X2, X3 are external temperature, orari and deltaT and β0 ... β3 are the regression 

coefficients to be estimated based on a record of observations. 

In Figure 25 the linear regression model is illustrated. Also in this case, we plot external 

temperature variable, vs the x_plot predicted value in the scatter plot of training data 

(x_train and y_train) both for heating and cooling dataset.  

 

Figure 25: Three variables linear regression model with scatter plot of training data. 
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3.2.16 Ridge regression 

Ridge regression, also known as Tikhonov regularization or, in machine learning, as 

weight decay,  is related to the Levenberg–Marquardt algorithm for non-linear least-

squares problems. This method has also built-in support for multi-variate regression, and 

this method solves a regression model where the loss function is the linear least squares 

function and regularization is given by the l2-norm regularization.  

Usually, the equation with A matrix and b vector 

𝐴𝑥 = 𝑏 

is solved with the ordinary least squares linear regression. Ordinary least squares seek 

to minimize the sum of squared residuals, which can be written as 

‖𝐴𝑥 = 𝑏‖2 

Ridge regression model is solved by including a regularization term in this minimization 

‖𝐴𝑥 = 𝑏‖2 + ‖Γ𝑥‖2 

where Γ is Tikhonov matrix 26. In many cases, this matrix is chosen as a multiple of the 

identity matrix giving preference to solutions with smaller norms; this is known as L2 

regularization. L2 loss function minimizes the sum of the square of the differences 

between the true value and the estimated values as 

𝐿2 = ∑(𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 − 𝑦𝑖 𝑝𝑟𝑒𝑑)
2

𝑛

𝑖=1

 

where 𝑦𝑖 𝑡𝑟𝑎𝑖𝑛 is the i true value and 𝑦𝑖 𝑝𝑟𝑒𝑑 the estimated i values. 

The Ridge Regression procedure addresses some of the problems of Ordinary Least 

Squares by imposing a penalty on the size of coefficients. The ridge coefficients minimize 

a penalized residual sum of squares introducing α, a fixed positive constant that has to 

be tuned in order to obtain a good calibration of the penalty term. 

α is a complexity parameter that controls the amount of shrinkage and so regularization 

strength. Regularization improves the conditioning of the problem and reduces the 

variance of the estimates. Larger values specify stronger regularization. When α=0 a 

classical linear regression is obtained.  

In order to validate α, a build-in cross-validation is used. RidgeCV scklearn command 

implements ridge regression with built-in cross-validation of the alpha parameter. Then 

α is obtained by creating a function that tests each value of α by fitting x_train, y_train 

and checking the score on the base of mean absolute error. Below an example is shown. 

 alphas = 10**np.linspace(10,-2,100)*0.5 

https://en.wikipedia.org/wiki/Ordinary_least_squares
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 ridge = Ridge(normalize=True) 

 coefs = [] 

 for a in alphas: 

 ridge.set_params(alpha=a) 

 ridge.fit(x_train, y_train) 

 coefs.append(ridge.coef_) 

 np.shape(coefs) 

 ridgecv=RidgeCV(alphas=alphas, scoring='mean_absolute_error', normalize=True) 

 ridgecv.fit(x_trainH, y_trainH) 

 ridgecv.alpha_ 

The α value obtained is equal to 0.005. 

 

3.2.17 Single variable linear regression 

In this case, the sklearn. polynomial features and ridge regression estimator developed 

for Python are used in order to consider a second-degree model. Since, a second-degree 

model is used, the regression model to express the dependence of the expected 

response on the predictor can be written as 

𝑌𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1𝑥2+𝛽2𝑥 

where Ypred=yplot is the predicted value and x=xtrain is the external temperature variable.  

As previously described, α is equal to 0.005 and an automatic solver is used based on 

the type of data. This automatic solver can select among Singular Value Decomposition 

of X to compute the Ridge coefficients, ‘standard scipy.linalg.solve’ function to obtain a 

closed-form solution, ‘sparse_cg’ using the conjugate gradient solver as found in 

scipy.sparse.linalg.cg, regularized least-squares routine and ‘sag’ using a Stochastic 

Average Gradient descent. 

Also in this case it is possible to extract the intercept and obviously, the coefficients of 

the second-degree model, by fitting the model on the base of true training data x_train 

and target value y_train arrays, without any normalization. Once the model is fitted, we 

can obtain the predicted values array y_plot on the base of ridge regression model. A 

regression model example is shown below.  

# Train the model using the training sets 

modelH1 = make_pipeline(PolynomialFeatures(degree), Ridge(alpha=0.005, copy_X=True, 

fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)) 

modelH1.fit(x_trainH, y_trainH) 

y_plotH1 = modelH1.predict(x_trainH) 
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In Figure 26 the non-linear regression model, that is the x_train values vs the x_plot 

predicted value in the scatter plot of training data is shown (x_train and y_train) both for 

heating and cooling dataset.  

 

 

Figure 26: Ridge second order degree regression model with scatter plot of training data. 

 

In this case, the same metrics previously described are calculated in order to quantify the 

accuracy of the model. 

 

3.2.18 Two variables linear regression 

By adding orari variable, x_train becomes a 2D-array composed by external temperature 

array and orari array. The regression model to express the dependence of the expected 

response on the predictor can be written as 

𝑌𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1𝑥2+𝛽2𝑦2+𝛽3𝑥𝑦+𝛽4𝑥+𝛽5𝑦 

where 𝑌𝑝𝑟𝑒𝑑=yplot is the predicted value, predictor 𝑥 is external temperature and predictor 

𝑦 is orari variable, and β0 ... β5 are the regression coefficients to be estimated based on 

a record of observations. 

Figure 27 shows the scatter plot of non-linear regression model obtained by fitting two 

variables, both for heating and cooling dataset and considering weather temperature in 

the x-axis.  
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Figure 27: Ridge second order degree regression model with scatter plot of training data. 

 

 

3.2.19 Three variables linear regression 

Finally, also in this case, by adding deltaT variable, x_train becomes a 3D-array 

composed by external temperature array, orari and deltaT arrays. The regression model 

to express the dependence of the expected response on the predictor is 

𝑌𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1𝑥2+𝛽2𝑦2+𝛽3𝑧2 + 𝛽4𝑥𝑦+𝛽5𝑦𝑧+𝛽6𝑧𝑥 + 𝛽7𝑥+𝛽8𝑦+𝛽9𝑧 

where 𝑌𝑝𝑟𝑒𝑑=yplot is the predicted value, predictor 𝑥 is external temperature and predictor 

𝑦 is orari variable, z deltaT variable and β0 ... β9 are the regression coefficients to be 

estimated based on a record of observations. 

Figure 28 shown the scatter plot of non-linear regression model obtained by fitting three 

variables both for heating and cooling dataset considering ambient temperature in the x-

axis.  
 

 

 

 

Figure 28: Ridge second order degree regression model with scatter plot of training data. 
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3.2 The Geosolar integration at TUC  

The study has been focused on the building K2 and surroundings of the Environmental 

Engineering Department in the Campus of the Technical University of Crete. 

 

 

Figure 29:Technical University of Crete Campus 

 

The building has rectangular shape as can be seen in Figure 29, made of two symmetric 

parts or wings, with 2,032.21 m2 and 1,135.43 m2 of conditioned and non-conditioned 

area, respectively. The building is composed of a ground floor, 2 upper floors and a roof, 

where the solar collectors will be placed. 

The thermal comfort is provided by an HVAC system (Heating Ventilation and Air 

Conditioning) that supplies heated or cooled air to the conditioned rooms when needed. 

The heat pump of the system is a Hitachi Air Conditioner Model RAS-20FSG, as can be 

seen in Figure 30. The model has a maximum input of 35.5 kW, an input power for the 

compressor of 23.6kW and 22.7 kW, and for the fan of 1.39 kW-1.61 kW for heating and 

cooling operations respectively. 
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Figure 30: HVAC system and its operating parameters. 
 

3.3.1 Energy consumption 

The Combined Geothermal and Solar Thermal System is designed to produce heating 

and cooling, in order to meet the energy needs of the building K2 in TUC. For that, it is 

necessary to know the energy consumption of the building for covering the demand and 

ensuring thermal comfort. 

The Department of Environmental Engineering in TUC developed, using OpenStudio 

software, a model for K1 building, with similar characteristics to those of the one being 

studied (K2). This model is based on the features and parameters of the real building and 

is able to simulate its behaviour and needs along the year with reliable values. In this 

way, and as the two buildings share analogous dimensions, distribution, components and 

activities building K2 is assumed to have the same energy consumption as the one 

provided by the K1 building model simulations. 

 

3.3.2 Heat consumption 

The model presents the heat consumption in every thermal zone of the building 

throughout the year. The building model is divided in 30 thermal zones with different 

consumptions, from which the simulations give values in intervals of 1 hour, from the 1st 

of January until the 31st of December, forming a total of 8,760 values per thermal zone. 

In Table  part of the Heat Consumption data from the K1 building model simulation is 

shown. Consumption is zero in cells denoted with (-). The simulation presents the data 

in Joules, which is then converted to kWh for further processing. 
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Table 10: Heat consumption data. 

 

Summing up all the values from each thermal zone, the total heat consumption per area 

is obtained. To know the peak power of the system, the highest value of the consumption 

for the whole year is checked, as shown in Table . 

 

Table 11: Total heat consumption per thermal zone. 

Finally, the total heat consumption of the building is obtained summing up the total 

consumption in every thermal zone. For the system peak power, the highest value from 

summing up all the thermal zones is taken as a reference Table . 

Total heat consumption Average power Peak power 

549,655,792,622 J 2,091,536 J 185,336,858 J 

82,301.97 kWh 0.58 kWh 51.48 kW 

Table 12: Total heat consumption and peak power of the building. 
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Figure 31 presents the heat consumption along the year, having the greatest 

consumption in the month of January with 17,104.96 kWh, the lowest in October with 

9,610.22 kWh, and no consumption from May to September, included. 
 

Figure 31: Heat consumption along the year. 

 

3.3.3 Cooling consumption 

The cooling consumption has been taken from the academic paper “Development of a web based 

energy management system for University Campuses: The CAMP-IT platform” based on both K1 

and K2 buildings of Technical University of Crete. The peak power has been taken from the 

OpenStudio model. 
 

Table 13: Cooling consumption calculation. 
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Table 14: Average and peak cooling consumption. 

 

The deployed value for consumption is the average between the cooling energy consumption in 

2014 and 2015. Figure 32 presents the cooling consumption along the year, starting in May, 

having the greatest consumption in the month of July with about 33,000 kWh, ending in October, 

with and no consumption from November to April, included. 

 

Figure 32: Cooling consumption along the year. 
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4. Research activities in the Smart GEMS Project 

4.1 Neural Network toolbox integration through a DLL  

The possibility to use an energy consumption model in batch by integrating it in a data 

acquisition system is a very important aspect in data analysis. Integration refers to 

bringing together the component sub-systems (like software application) into one system 

and ensuring that the subsystems work together as a system. In this work, the overall 

idea is to integrate the algorithm related to energy consumption forecasting into the 

Energy Management System (EMS) in order to control the consumption of Smart Grid 

buildings. Then, the activities started from the study of 24h load forecasting of a micro-

grid using artificial neural networks conducted by TUC in Loccioni. The purpose was the 

integration of the thermal storage with the micro-grid and in particular the availability of 

excess production in the micro-grid during weekends, so as to schedule the charging of 

the thermal storage using this excess production: In order to obtain this, the mentioned 

work has been focussed to predict the day ahead excess production of the micro-grid so 

as to apply appropriate controls for its utilisation. Thermal storage is connected to the 

Leaf Lab and the automation system for its charge and discharge was set considering 

this building. Currently, the automation system is set to charge the thermal storage during 

weekends, when there is excess production from Leaf Lab’s PV. This kind of automation 

will charge the storage while energy is not needed form Leaf Lab, but it could be needed 

from the micro grid. Consequently, there is a requirement to change the settings so that 

the thermal storage will be charged when there is real excess production at micro-grid 

level. 

Consequently, this work is focussed on the integration and testing of a part of the 

algorithm that is necessary to predict excess production of the micro-grid: the forecasting 

of Energy Consumption. In this way, it is possible to check if this methodology is robust 

and reliable to reach the final goal of the optimization of power distribution within the 

micro-grid through the application of appropriate controls.  

To obtain this result, the integration of the neural network algorithm for Energy 

Consumption estimation is necessary to avoid the use of an external software application 

to generate an output, like in this case MATLAB. This is possible by creating the data 

analysis algorithm in MATLAB and trough a Dynamic Link Library (DLL), export the 

algorithm with the same programming language used in Energy Management tool. DLL 
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is Microsoft's implementation of the shared library concept that contains code and data 

used by multiple programs at the same time. 

In this way, it is possible to obtain the results of a trained network by knowing the internal 

data processing of the neural network and by programming a function in .NET that can 

read all this data (the training result) when a user introduces his input data (Figure 33) 

without calling MATLAB. 

 

 

Figure 33: Black box overview  

 

By building a black box, one has to decide the number of input and output variables. As 

previously explained, the objective of the algorithm is one day forecast of the Leaf Lab 

Energy Consumptions by considering as input the training variables related to past 

collected consumption data, the external temperatures, the network topology and the 

weights (in term of number of neurons and delays). 

 

4.1.1 Neural Network toolbox and Nonlinear autoregressive neural network with 

external input 

MATLAB Neural Network Toolbox provides algorithms, to create, train, visualize, and 

simulate deep neural networks. One can perform classification, regression, clustering, 

dimensionality reduction, time-series forecasting, and dynamic system modelling and 

control. In this case, as previously described, the goal is a time-series forecasting related 

to Energy consumption of Leaf Lab building trough NARX (Nonlinear autoregressive with 

external input) algorithm. The standard NARX network is a two-layer feedforward 

network, with a sigmoid transfer function in the hidden layer and a linear transfer function 

in the output layer. This network also uses selected delay lines to store previous values 
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of the x(t) and y(t) sequences. The output of the NARX network, y(t), is fed back to the 

input of the network (through delays), and is a function of  

y (t – 1), y (t – 2), ..., y (t – d) 

In fact, this network can learn to predict one-time series given past values of the same 

time series, the feedback input, and another time series, called the external or exogenous 

time series. The NARX model will provide better predictions than this input-output model, 

because it uses the additional information contained in the previous values of y(t).  

Neural Network tool, ntstool can be used to solve three different kinds of time series 

problems: 

 to predict future values of a time series y(t) from past values of different time 

series. 

 to predict future values of a time series y(t) only from past values of that series. 

 to predict values of y(t) from previous values of x(t), but without knowledge of 

previous values of y(t). 

In the first type of time series problem, one would like to predict future values of a time 

series y(t) from past values of that time series and past values of a second-time series 

x(t). This form of prediction is called nonlinear autoregressive with exogenous (external) 

input, or NARX, and can be written as 

y(t) = f (y (t – 1), ..., y (t – d), x (t – 1), ..., (t – d)) 

In the second type of time series problem, there is only one series involved. The future 

values of a time series y(t) are predicted only from past values of that series. This form 

of prediction is called nonlinear autoregressive, or NAR, and can be written as 

y(t) = f (y (t – 1), ..., y (t – d)) 

Also in third type, time - series problem, two series are involved, an input series x(t) and 

an output/target series y(t). In this case, it is possible to predict values of y(t) from 

previous values of x(t), but without knowledge of previous values of y(t). This input/output 

model can be written as follows: 

y(t) = f (x (t – 1), ..., x (t – d)) 

To define the time series problem for the toolbox, one has to: 

 train a network to fit a time series data set, by using the neural network time series 

tool GUI called nnstool,  

 arrange a set of time series input vectors as columns in a cell array, 
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 arrange another set of time series target vectors (the correct output vectors for 

each of the input vectors) into a second cell array.  

4.1.2 Case study 

As previously explained, the case study is the micro-grid of the Leaf Community, in Angeli 

di Rosora, Italy. In particular, the energy consumption of Leaf Lab building is forecasted 

by using energy consumption monitored data and external temperature collected during 

2016.  

 

 

 

 

Table 15: Input-target variables 

Since true output (power consumption [kW] in 2016) and the other input are available 

(external temperature [°C] in 2016) during the training of the network, the nonlinear 

autoregressive with exogenous (external) input in which the true output is used instead 

of feeding back the estimated output, has been set up. This has two advantages. The 

first is that the input to the feedforward network is more accurate. The second is that the 

resulting network has a purely feedforward architecture, and therefore a more efficient 

algorithm can be used for training.  

 

4.1.3 Case study 

As already explained, this network has two inputs. One is an external input, and the other 

is a feedback connection from the network output (Figure 34).  

 

 

Figure 34: Net overview  

 

For each of these inputs, there is a selected delay line to store previous values. To assign 

the network architecture for a NARX network, we select the delays associated with each 

TARGET y(t) INPUT x(t) 

Energy 

consumption [kW] 

External Temperature 

shifted of 1 day 
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tapped delay line, and also the number of hidden layer neurons. The network architecture 

is described below. 

inputDelays = 1:5; 

feedbackDelays = 1:5; 

hiddenLayerSize = 10; 

net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize); 

These inputs become variables that can be adjusted if the network training performance 

is poor. By increasing the number of neurons and the number of delays obviously 

requires more computation, and this can overfit the data when the numbers are set too 

high, but it allows the network to solve more complicated problems.  

 

4.1.4 Prepare the data for training 

By training a network containing selected delay lines, it is necessary to fill the delays with 

initial values of the inputs and outputs of the network to keep the original time series data 

unchanged. The command preparets is used to facilitates this process. This function 

simplifies data preparation task by reformatting input and target time series and shifting 

input and target time series as many steps as are needed to fill the initial input and layer 

delay states. This function can reformat the data each time a network is transformed with 

openloop,closeloop, removedelay or adddelay, .  

The function has three input arguments: the network, the input sequence and the target 

sequence and can be called as follows: 

[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) 

where Table  shows the input arguments. 

net Neural network 

Xnf Non-feedback inputs 

Tnf Non-feedback targets 

Tf Feedback targets 

EW Error weights (default = {1}) 

Xs Shifted inputs 

Xi Initial input delay states 

Ai Initial layer delay states 

Ts Shifted targets 

EWs Shifted error weights 

Table 16: input arguments 

file:///C:/Program%20Files/MATLAB/MATLAB%20Production%20Server/R2015a/help/nnet/ref/openloop.html
file:///C:/Program%20Files/MATLAB/MATLAB%20Production%20Server/R2015a/help/nnet/ref/closeloop.html
file:///C:/Program%20Files/MATLAB/MATLAB%20Production%20Server/R2015a/help/nnet/ref/removedelay.html
file:///C:/Program%20Files/MATLAB/MATLAB%20Production%20Server/R2015a/help/nnet/ref/adddelay.html
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4.1.5 Set up Division of Data for Training, Validation, Testing 

A particular attention has to be conducted in the way to split the dataset. In order to check 

the accuracy and reliability of the algorithm, the whole dataset has to be subdivided in 

three parts: training, validation and testing, that allows. In this application, the input 

vectors and target vectors will be randomly divided into three sets: 

 70% will be used for training. These are presented to the network during 

training and the network is adjusted according to its error. 

 15% will be used to measure network generalization and to stop training before 

overfitting. 

 The last 15% will be used as a completely independent test of network 

generalization and provide a measure of network performance.  

The lines commands are written as follows: 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

 

The network uses the Levenberg-Marquardt algorithm for training. The Levenberg-

Marquardt (LM) algorithm is an iterative technique that locates the minimum of a function, 

expressed as the sum of squares of nonlinear functions. It can be assumed as a 

combination of steepest descent and the Gauss-Newton method.  

For problems in which Levenberg-Marquardt does not produce as accurate results as 

desired, we use the Bayesian Regularization. 

Each time a neural network is trained, it can result in a different solution due to different 

initial weight and bias values and different divisions of data into training, validation, and 

test sets. Different neural networks trained on the same problem can give different 

outputs. For the same input, for these reasons, the initial conditions of Neural Network 

have been tried several times to ensure a good accuracy.  

The following code calculates the network outputs, errors and overall performance. The 

lines commands are written as follows: 

outputs = net(inputs,inputStates,layerStates); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs) 

In order to improve the results obtained, several operations has been conducted: 

 Increased the number of hidden neurons or the number of delays. 
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 Increased the number of training vectors. 

 Tried a different training algorithm 

4.2 Study of TUC experiences in NN prediction based systems 

TUC has used neural network to predict the energy loads and the outside ambient air 

conditions, In order o do this as input parameters for the neural network predicting the 

energy load of the buildings, the exterior temperature, measured by a weather station 

close the building studied, the day of the week, time (hh:mm) and the energy demand, 

recorded every five minutes by smart meters were used. 

In the same way, the exterior temperature, the total horizontal radiation, the relative 

humidity, the wind speed and direction and time of day (hh:mm) were used as inputs for 

the neural network that predicts the exterior temperature for the 24 h following a given 

moment; also in this case the weather data was collected from a weather station close 

to the studied buildings. 

 

 

 

 

 

 

 

Figure 35: The TUC ANN prediction model. 

 

The neural network used in both cases was an Elman neural network [2] with feed 

forward, below are the parameters used to configure the network in the Matlab 

environments:  

 Number of Hidden Layers: 3 

 Size of Hidden layers: 322 

 Performance function/indicator: Run Mean Square Error (RMSE) 

 Initial training dataset: 1,000 

 Epochs: 3,000 

 Number of maximum fails: 3,000 

 Transfer function: Tangent sigmoid function 

OUTPUT 
Energy Loads 

 

Neural Network for 
energy loads prediction 

INPUT 
- Exterior Temperature 
- Day of the week 
- Minute of the day 
- Power Demand 
 
 

Neural Network for 
24h external Temp 

OUTPUT 
exterior temperature for 

the next 24 h 

INPUT 
- Exterior Temperature 
- total horizontal radiation 
- relative humidity 
- wind speed and direction 
-  time 



 

645677 — SMART GEMS — H2020-MSCA-RISE-2014  
D4.1 Optimised Renewables’ Operation for Smart Grids: Monitoring and Control Strategies 

 

64 

Modelling the environment temperature with neural network and predicting power 

demand gave good result (see Figure 36 and Figure 37). 

 

Figure 36: Validation of ESPr model of Indoor Temperature at the Circulation Areas of K2 Building 

 

 

Figure 37: Measured and predicted power demand in the case study area 

 

The prediction techniques developed by TUC have been considered for the prediction of 

the energy production of the LFR solar collector operating at the Idea premises.  

A specific dataset has been prepared with this aim. The first activity was the adaptation 

of the query for the DBMS to get data every 5 minutes and not every 5 seconds, then the 

Date/Time field has been split in two different fields, the first one with the number of the 
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day and the second one with only HH:MM:SS at the end of the process the data we have 

obtained was: 

 Day Number: the day of the week from 1 to 5 because the system normally is 

not working on Saturday and Sunday 

 Time: hours:minutes:seconds 

 Tin: Temperature of the oil at the beginning of the absorption pipe  

 Tout: Temperature of the oil at the beginning of the absorption pipe  

 Flow: Flow of the oil in m3/h  

 DNI: Direct Normal Irradiation  

 Tamb: Ambient Temperature 

 Status: 0 if the system is not focalized, 1 if the system is focalized.  

 Power: the power produced in kW. 

At this point we used this dataset for training a neural network implemented in MatLab in 

order to verify the quality of the prediction: six training session have been launched, two 

for 8 hours prevision, two for 12 hours prevision and two for 24 hours prevision; for every 

couple a network with 10 neurons and 2 delays and a network with 30 neurons and 5 

delays have been used.  

Other configurations MatLab have been:  

 NARX Network, Nonlinear Autoregressive with External (Exogenous) Inputs 

 Input time series x(t): all data less the power 

 Target time series for the output y(t): the power 

 Validation and Test data: Training 70%, Validation 15%, Testing 15% 

 Training Algorithm: Levenberg-Marquardt 

The preliminary results should require a further improvement as they depend on the 

quality of the data given to the neural network, and, as a matter of fact, training data have 

been collected before the commissioning of a thermal energy storage which will stabilize 

the operability of the whole circuit. Presently the maximum working temperature is 

reached very fast and the collectors must be defocused many times during the day, 

resulting in many fluctuations of the energy generation process. 
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4.2.2.1 Custom architecture for remote sensoring and data collecting hub 

TUC have used some Schneider electronic devices for the measurement and collection 

of indoor air data. In particular sensors communicate the values to a collecting unit using 

ZigBee. A custom architecture has been conceived which would use the standard WiFi 

network for data exchange, compact microcontrolled sensing boards and a powerful 

ARM board running an OS Linux as data collector and manager. 

For the main board the Beagle Bone green has been selected. It has a powerful 

processor, an on-board full linux distribution, a high number of reconfigurable GPIO, 

seven 12 Bit ADC, 8 pwm generator and a variety of connection interfaces (Ethernet, 

usb, I2C, Uart, etc.). 

The main specs are reported below (hardware specs and the pinout of the board are 

available in Annex D-J). 

 Processor: AM335x 1GHz ARMR Cortex-A8 

 RAM: 512MB DDR3 

 on-board Flash Storage: 4GB eMMC 

 CPU Supports: NEON floating-point & 3D graphics accelerator 

 Micro USB Supports: powering & communications 

 USB: Host 1 

 Grove Connectors: 2 (One I2C and One UART) 

 GPIO: 2 x 46 pin headers 

 Ethernet: 1    

The sensor board should be ready to be interfaced with different kind sensors and to 

communicate with standard Wi-Fi network. The selected module is based on ESP8266 

chip, basically a TTL "Serial to Wireless Internet" device. ESP8266 is a system-on-a-chip 

(SoC) with  2.4 GHz Wi-Fi (802.11 b/g/n, supporting WPA/WPA2), general-purpose 

input/output (16 GPIO), Inter-Integrated Circuit (I²C), analogue to digital conversion (10-

bit ADC), Serial Peripheral Interface (SPI), I²S interfaces with DMA (sharing pins with 

GPIO), UART (on dedicated pins, plus a transmit-only UART can be enabled on GPIO2), 

and pulse-width modulation (PWM). It employs a 32-bit RISC CPU based on the Tensilica 

Xtensa L106 running at 80 MHz (or overclocked to 160 MHz). It has a 64 KB boot ROM, 

64 KB instruction RAM and 96 KB data RAM. External flash memory can be accessed 

through SPI. 
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(Specifications and images of the selected board can be found in Annex K) 

 

4.2.3 Identification of programming languages 

Neural Networks can be implemented through a large number of specific libraries and 

frameworks available in almost all developing languages [4]. Nevertheless, the most 

popular languages are C++ and Python and one of these is used for developing a custom 

implementation of machine learning procedures. C++ is a much harder language to deal 

with than Python, but it would be a plus to use C++ instead of a more “user-friendly” 

language because of its efficiency. 
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5. Main findings  

5.1 Application at the Leaf micro-grid  

The Leaf micro-grid is the micro-grid of the Leaf Community, in Angeli di Rosora, Italy, 

as represented in Figure 38.  

The energy production sources connected to the grid are: 

 a micro-hydropower plant, of 48kWp 

 four rooftop PV installations of total 421.3kWp  

 a dual axis Solar Tracker of 18kWp 

 five buildings are currently connected to the micro-grid: 

 the Leaf Lab, industrial building 

 the AEA, office building 

 the SUMMA, office building 

 the Leaf Farm, office building 

 the KITE, industrial building. 

Figure 38: The LEAF micro-grid. 
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All buildings are equipped with ground water heat pumps (GWHP). A 224kWh electrical 

storage system and a thermal storage with heat capacity 523.25kWh/K are also part of 

the micro-grid.  

All the previously mentioned power loads, renewables and storage components are 

connected in parallel to one single Point of Delivery (POD). All nodes as well as the 

collective operation of the micro-grid are monitored and controlled via My Leaf web based 

platform. 

The rooftop PVs are installed on four of the five interconnected buildings of the micro-

grid. The production by each rooftop PV installation is consumed by the respective 

building first. If there is residual production, it is fed to the micro-grid. The production of 

the micro-hydropower plant is also fed to the micro-grid. When the production is not 

enough to cover the micro-grid’s loads, energy is withdrawn from the main grid. Energy 

is also given to the main utility grid if the demand of the micro-grid has been fulfilled, 

storages are fully charged and there is excess production. Regarding the storages, both 

have been recently connected to the grid and their operation and integration currently 

being tested.  

The integration of the thermal storage with the micro-grid has been studied. Specifically, 

the availability of excess production in the micro-grid during weekends is of interest, so 

as to schedule the charging of the thermal storage using this excess production.  

The thermal storage is connected to the Leaf Lab and the automation system for its 

charge and discharge has been set considering this building. Currently, the automation 

system is set to charge the thermal storage during weekends, when there is excess 

production from Leaf Lab’s PV. This kind of automation will charge the storage when 

energy is not needed form Leaf Lab, but it could be needed from the micro grid. 

Consequently, there is a requirement to change the settings so that the thermal storage 

will be charged when there is real excess production at micro-grid level. To this end, 

excess production of the micro-grid during weekends needs to be predicted in a robust 

way so that charging of the thermal storage is controlled accordingly.  

 

5.1.1 System description 

Ground water heat pumps 

There are three water to water heat pumps in Leaf Lab. GWHP1 is connected to the 

chilled beams installed in the offices for space heating and cooling. GWHP2 and GWHP3 
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are connected to four HVAC units that service the offices, the laboratory and the 

warehouse.  

The heat pumps are connected to the storage as shown in Figure 39 GWHP2 and 

GWHP3 are used for charging the thermal storage. When the thermal storage is 

discharged, thermal energy is provided to the chilled beams, thus avoiding activation of 

GWHP1 during the first three days of the week.  

Thermal storage 

The TES is a water tank with dimensions 12.3 X 11 X 3.4 m (400m³).The water tank is 

buried and insulated with16 cm of XPS. The heat stored is sensible heat intended to 

cover the thermal loads of Leaf Lab. The thermal storage is charged during weekends 

using the excess production of the Leaf Labs’ rooftop PV installation. The excess 

production is used to operate GWHP2 and GWHP3 

System settings 

The charging process begins when there is an excess in Leaf Lab’s PV power production 

over 60kW. This is the threshold for activation of GWHP3. After activation of GWHP3, if 

there is excess of 50kW, GWHP2 is activated.  

The activation of the heat pumps for charging the thermal storage is allowed only during 

weekends, from 8:00am to 16:00pm in winter weekends and from schema7:00am to 

18:00pm in summer weekends. The pumps are switched off at the end of each schedule 

or if PV production is significantly reduced over a sustained period of time. In case PV 

power is instantly reduced power is withdrawn from the grid in order to keep the heat 

pumps, which provide heat to the thermal storage, activated. For the deactivation of the 

heat pumps if the power from the grid is greater than 130kW GWHP3 is switched off and 

following this GWHP2 is switched off when energy withdrawn from the utility grid exceeds 

90kW. 
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Figure 39: Thermal storage - GWHP connection. 
 

5.1.2 Power production data 

Power data as well as environmental data have been collected from the My Leaf platform. 

The power production of each energy source and the power taken from and exported to 

the main grid are being measured.  

The total production of the micro-grid can be calculated as follows: 

𝑃𝑀𝐺 = 𝑃𝐿𝐿𝑃𝑉 + 𝑃𝐴𝐸𝐴𝑃𝑉 + 𝑃𝑆𝑈𝑀𝑀𝐴𝑃𝑉 + 𝑃𝐾𝐼𝑇𝐸𝑃𝑉 + 𝑃𝑇𝑈𝑉 + 𝑃𝐻𝑌𝐷𝑅𝑂4       

Where: 

PLLPV is the power production of the Leaf Lab PV, in kW 

PAEAPV is the power production of the AEA PV, in kW 

PSUMMAPV is the power production of the SUMMA PV, in kW 

PKITEPV is the power production of the KITE PV, in kW 

PTUV is the power production of the solar tracker, in kW 

PHYDRO4 is the power production of the micro-hydro power plant, in kW 

The production of the micro-grid is self-consumed and excess production is given to the 

main grid. Since there are measured data of the power exported to the grid, the power 

production self-consumed at any time in the micro-grid can be calculated as follows: 

𝑃𝑆𝐶 =  𝑃𝑀𝐺 − 𝑃𝑂𝑈𝑇      

Where: 

PSC is the power production self-consumed, in kW 

POUT is the amount of excess power production that is exported to the main-grid, in kW 
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5.1.3 Prediction using Neural Network 

The collected data is used for prediction of excess power of the micro-grid. A good 

prediction of excess production has to be achieved. For this purpose the Matlab [14] 

Neural Network (NN) tool was utilised. Alternative combinations of input parameters were 

tested so as to investigate which set of input parameters were suitable for achieving an 

accurate prediction of excess production. Furthermore alternative training algorithms 

were tested and neural network structures in order to conclude which algorithm and 

structure could give the best prediction results. 

5.1.4 NN model setup 

The excess production of energy that can be used for charging the thermal storage can 

be determined from the measured data of power exported to the main grid. The prediction 

of excess production is a non-linear autoregressive problem. Past values of excess 

production as well as past values of day, time, irradiance, temperature and total 

production were used for prediction of excess power in 24h time horizon.  

As altready discussed, the excess production is related to parameters that determine 

production. For prediction of PV production, day of the week, time of day, temperature 

and radiation have been used as inputs. Prediction of hydro power production using as 

inputs the river water level and machine water level was attempted but a high accuracy 

prediction could not be achieved. 

As a first step, day of the week, time of day and irradiance was used for prediction of 

excess production. Subsequently, a second prediction approach is tested using the first 

step’s inputs plus ambient air temperature as input. A third prediction model is attempted 

using as input parameters the day of the week, the time of the day and total micro-grid 

production since excess production follows the trend of total production.  

 Inputs Target Output 

1st 

prediction 

day of week 

time of day 

irradiance 

excess 

production 

(POUT) 

excess 

production 

(POUT) 

2nd 

prediction 

day of week 

time of day 

irradiance 

temperature 

excess 

production 

(POUT) 

excess 

production 

(POUT) 
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3rd 

prediction 

day of week 

time of day 

micro-grid 

production 

excess  

production 

(POUT) 

excess 

production 

(POUT) 

 

Table 17: Input data for each prediction. 
 

 

5.2 Test of the custom data collection platform  

Algorithms applied by TUC are based on the work of Jeffrey L. Elman. Before starting 

the development of the machine learning platform, C++ sample code for implementing 

an Elman Neural Network has been prepared; the example code was successfully 

compiled and executed on a beagle bone green.  

Accordingly with Elman: “in the implemented code input units and context units activate 

the hidden units; and then the hidden units feed forward to activate the output units.  The 

hidden units also feed back to activate the context units. This constitutes the forward 

activation.  Depending on the task, there may or may not be a learning phase in this time 

cycle. If so, the output is compared with a teacher input and backpropagation of error is 

used to incrementally adjust connection strengths.  Recurrent connections are fixed at 

1.0 and are not subject to adjustment.  At the next time step t+1 the above sequence is 

repeated.  This time the context units contain values which are exactly the hidden unit 

values at time t.  These context units thus provide the network with memory." 
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Figure 40: A common structure of an Elman network. 

 

Elman intended the input and output units to represent individual letters, with could train 

the network to predict the next letter in a string of letters. 

Based on this we used an example where the neural net architecture has six input, and 

six output units (for numbers 1 through 5, plus 0 for the terminal symbol).  There are three 

hidden units, with three corresponding context units. 

Training the net for a particular string involves several steps, the number depending on 

the length of the string.  At the beginning of training, the activations of the context units 

are set to 0.5.  The terminal symbol is first presented to the input units, and the net 

predicts the successor.  The error (the difference between the predicted and the actual 

successor specified by the training string) is determined and back propagated, and the 

weights are adjusted.  The context units receive a copy of the hidden unit's activations, 

and the next symbol in the training string (which was the target for the output units on the 

first step of training) is presented to the input units.  Training continues in this manner 

until another instance of the terminal symbol (0) is reached. 

The structure of the algorithm is the following: 

For each training string, do steps 1 through 7. 

Step 1:    Set activations of the context units to 0.5. 

Step 2:    Do Steps 3 through 7 until second instance of terminal symbol. 
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    Step 3:    Present input symbol. 

    Step 4:    Present successor to output units as target response. 

    Step 5:    Calculate predicted successor. 

    Step 6:    Determine error, backpropagate, and update weights. 

    Step 7:    Test for stopping condition: 

        If target = second instance of terminal symbol, then 

            Stop 

        Otherwise, 

            Copy hidden unit activations to context units and continue at Step 3. 

After training, the net can be used to determine whether any given string of numbers is a 

valid sequence, according to the training string.  As each symbol is presented, the net 

predicts the possible valid successors of that symbol.  The output unit with the highest 

activation value indicates that the symbol it represents is a valid successor to the current 

input.  Ideally, the net should be trained with enough iterations and just the right learning 

rate, resulting in a target activation of 0.3 or better, with the others falling well below. 

To determine whether a string of numbers is valid, the symbols (numbers) are presented 

to the net sequentially, as long as the net predicts valid successors in the string.  If the 

net fails to predict a successor, the string of numbers is rejected.  If all successors are 

predicted, the string is accepted as valid. 

The code is reported in as an Annex. 

 

5.3 Preliminary design of the Geosolar system in TUC 

The demand of heating and cooling needed to be supplied by the Combined System 

has been calculated. The next step is producing an initial system design to establish the 

different characteristics of this type of system based on the principles of the energy 

extraction, transportation and storage. The technology used is described along with the 

procedures followed to obtain the desired objectives. 

5.3.1 Ground source heating and cooling 

In the design of borehole heat exchangers, many factors come into play that carry 

different variants of a design for a system. So, the most suitable configuration must be 

found to address the specificities of the project, obtaining an optimum yield at the lowest 

possible cost. 
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5.3.2 Choice of geothermal system 

The several shallow geothermal methods to transfer heat out of or into the ground are 

reported in Table: 

 

Shallow geothermal 
methods 

Depth (m) Loops Reason 

 
Horizontal ground 
heat exchangers 

 
1.2-2.0 

 
Horizontal 

The underground temperature is constant 
after 8 to 15 meters depth, so in this case, 
the system would be affected by the 
temperature seasonal variations 

 
Borehole heat 
exchangers 

 
10-250 

 
Vertical 

It is the method chosen for the heating and 
cooling extraction of the terrain, as is the 
most suitable design for both storage and 
extraction 

 
Energy piles 

 
5-45 

 
Vertical 

Designed for a heating plant, so there are 
no foundations to put the energy pipes 

 
Ground water wells 

 
4-50 

 
Vertical 

The idea is use the geothermal boreholes 
as thermal storage, so if the aquifers of the 
zone are used, the heat stored would be 
lost 

Water from mines 
and tunnels 

 
10-300 

 
Vertical 

There are no mines/tunnels nearby for the 
extraction of the heating from the ground 

Table 18: Shallow geothermal methods 
 

Generally, horizontal systems are used for low temperature heating installations when 

large surfaces are available. Vertical systems, however, are used when large areas of 

land are not available, the heat demand is higher, for better efficiency or heat storage. 

The chosen shallow geothermal method is the Vertical Borehole Heat Exchanger, since 

is the most suitable for the specific case being studied. The desired depth range will be 

between 5 and 15 meters, trying to avoid the effect of the seasonal temperature 

variations but not exceeding a reasonable depth, in order to prevent high drilling costs. 
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Figure 41: Seasonal ground temperature fluctuation in relation to depth. 

 

Figure 41 presents an example of the ground temperature fluctuation in relation to depth, 

due to different seasonal climates along the year. As can be seen in red the ground 

temperature in summer is represented. From one side, the shallow layers of terrain are 

heated by the warm temperatures of this season, but on the other side, the inner layers 

are colder due to the low conductivity of the soil, as well as, the distance between the 

heating source and the strata blocking the absorption or extraction of thermal energy. 

Similar effects take place in other seasons, with the respective temperatures during those 

periods. Another parameter to consider is the choice of the fluid path (serial or parallel), 

based on the advantages and disadvantages of both options. 

 

 Advantages Disadvantages 

 

 

 

System in series 

Higher thermal operation per meter 

of pipe since it requires a larger 

diameter 

A larger diameter pipe is needed, 

which means an increase in the 

amount of fluid 

Easier purge The length is limited due to the 

pressure drop of the fluid 
Fluid path defined 

 
 

System in parallel 

Less costs of installation, since the 

diameters are smaller 

Purging operation more complicated 

Less amount of fluid used Balance of fluid in the various 

complicated loops 

Table 19: Fluid path configuration 
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Considering Table for the supply of heating and cooling in the building a parallel system 

is proposed, as even if this configuration it does not give as high thermal operation per 

meter, the cost of installation is much lower, since the diameters of the pipes are smaller. 

Moreover, the amount of fluid is less, so it is possible to further reduce costs. Even if the 

purging operations could be more complicated, the maintenance is minimum. 

5.3.3 Ground source heat pump principle 

To extract thermal energy from the ground, Borehole Heat Exchangers (BHE) is 

proposed. This kind of system will be closed loop, which means the cold/warm water goes 

along the length of the pipe until the bottom, and goes up again being heated/cooled by 

the ground temperatures. The pipe system will extend from the mentioned ground to the 

Absorption Heat Pump (AHP), and returned to the ground forming a closed loop without 

exchange of water. 

The water will be the same but its temperature will vary along the circuit, being heated up 

below the terrain and cooled down in the heat pump, or the opposite. As the final element 

supplying the energy is the Air Conditioning system, it will be defined as Water-to-Air Heat 

Pump. The diagram shown in Figure 42 presents the closed loop system of the absorption 

heat pump combined with the borehole heat exchanger, the heating and cooling circuits. 
 

Figure 42: Absorption Heat Pump 

 

The hot water from the Solar Collectors and/or the Boreholes heats the fluid/refrigerant 

solution in the Generator via heat exchanger, increasing the temperature and pressure. 

The strong refrigerant vapour travels to the condenser meanwhile the weak solution is 

recirculated to the Absorber. The high temperature and pressure refrigerant transfers the 

heat to the heating system in the Condenser, making the vapour become liquid. The high-
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pressure refrigerant flows through the expansion valve, where the pressure decreases. 

Because of that, the refrigerant has now a reduced boiling point, and the liquid changes 

phase again to vapour. Then, the vapour reaches the Evaporator, where ambient air is 

drawn by a fan through the low temperature vapour refrigerant, exchanging heat and 

leaving cooled air for cooling purposes. The now heated, low pressure vapour passes on 

to the Absorber. In the Absorber, the weak refrigerant solution recombines with the heated 

vapour, changing its state into a liquid. These releases further heat to the heating system. 

The now recombined solution is pumped back to the Generator where the process starts 

again. A second expansion valve controls the flow of weak refrigerant between the 

Generator and the Absorber. 

5.3.4 Solar Thermal Collectors 

The solar thermal collectors are a type of heat exchangers that absorb the incoming solar 

radiation, convert it into heat, and transfer this heat to a fluid (usually air, water, or oil) 

flowing through the collector. The solar energy collected is carried from the circulating 

fluid to the final destination of consumption or to the thermal energy storage tank from 

which can be drawn for use at night and/or cloudy days. 

There are basically two types of solar collectors: non-concentrating or stationary and 

concentrating. A non-concentrating collector has the same area for intercepting and for 

absorbing solar radiation, whereas a sun-tracking concentrating solar collector usually 

has concave reflecting surfaces to intercept and focus the sun’s beam radiation to smaller 

receiving area, thereby increasing the radiation flux. 

The main difference between concentrating and non-concentrating solar collectors is that 

the first ones track the sun in its trajectory across the sky and the second ones are 

permanently fixed in position. The concentrating collectors need electricity to run their 

tracking devices and they are also more expensive. For these reason, the non-

concentrating solar collectors are chosen. Inside this category there are three different 

types of collectors: Flat plate collectors (FPC), Stationary compound parabolic collectors 

and Evacuated tube collectors (ETC). 

 The FPC consist of a dark flat-plate absorber, a transparent cover that reduces 

heat losses, a heat- transport fluid (air, antifreeze or water) to remove heat from 

the absorber, and a heat insulating backing. 

 The CPC have the capability of reflecting to the absorber all of the incident 

radiation within wide limits. The necessity of moving the concentrator to 
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accommodate the changing solar orientation can be reduced by using a trough 

with two sections of a parabola facing each other. 

 The ETC are composed of multiple evacuated glass tubes each containing an 

absorber plate fused to a heat pipe. The heat is transferred to the transfer fluid and 

then to the heating system. 

Flat-plate collectors usually lose more heat than evacuated tubes and if they are 

compared on the basis of absorber plate area, the last ones are more efficient per square 

meter than equivalent flat plate systems. 

However, the evacuated tube collectors are more expensive and normally used for 

irregular roofs and/or when the roof area is limited, as they require less overall space. 

Moreover, they work with higher temperatures in the system, which is not good for long 

periods of low hot water use. They are also perceived as more fragile. 

In the cases with flat roof and enough space for placing several solar collectors, as it is 

the case of K2 building, some low cost flat plate collectors can be more cost-efficient than 

evacuated tube collectors. For that reason, the proposed solar collector type will be flat-

plate, as they cost less and considered to be more efficient in this particular application. 

The collector used in terms of its technical characteristics is the ARCON Solar Collector 

type HT- HEATstore 35/10. The parameters of the chosen Thermal Solar Collector are 

detailed in the data sheet (Annex B). 

5.3.5 Solar thermal energy 

To calculate the energy that the collector can provide, its efficiency factors, as well as, 

the area of the collector: Ac = 13,57 m2 (included in the data sheet in Annex B) need to 

be taken into account. In the case of the chosen panels, ARCON Solar Collector type HT-

HEAT store 35/10, those factors are the collector loss coefficients (a1 and a2), the monthly 

average 𝜏𝛼 product (𝜏𝛼) and the corrected collector heat removal factor (FR), among others. 

 
Those factors are needed in the next formula (equation taken from the collector data 

sheet) to calculate the collector efficiency (ηc), which also depends on the irradiation (G) 

and the efficiency when the difference of temperature is equal to 0 (ηo), the maximum 

efficiency of the collector: 
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7. Solar thermal energy 

7.1. Collector parameters 

To calculate the energy that the collector can provide, it must be taken into account its efficiency 

factors, as well as, the area of the collector: Ac = 13,57 m2 (included in the data sheet in Annex B). In 

the case of the chosen panels, ARCON Solar Collector type HT-HEAT store 35/10, those factors are the 

collector loss coefficients (a1 and a2), the monthly average 𝜏𝛼 product (𝜏𝛼) and the corrected collector 

heat removal factor (FR), among others. 

𝑎1 = 1.118 [ 
𝑊

𝑚2𝐾
 ]  ;  𝑎2 = 0.032 [ 

𝑊

𝑚2𝐾2
 ]  ;  𝐹𝑅 = 0.97 [ 

𝑊

𝑚2𝐾
 ]  ;   𝜏𝛼 = 0.96 

 

Those factors are needed in the next formula (equation taken from the collector data sheet) to 

calculate the collector efficiency (ηc), which also depends on the irradiation (G) and the efficiency 

when the difference of temperature is equal to 0 (ηo), the maximum efficiency of the collector:  

η𝑐 = η0 −
a1(T𝑚 − T𝑎 )

𝐺
−

a2 (T𝑚 − T𝑎 )2

𝐺
  

𝜂0 =  0,827                  𝐺 =  𝑇𝑜𝑡 𝑎𝑙 (𝑔𝑙 𝑜𝑏𝑎𝑙) 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛 𝑐𝑒  𝑜𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜 𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 [
𝑊

𝑚2
]  

 

𝑇𝑚 = 𝑀𝑒𝑎𝑛 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝑓𝑙𝑢 𝑖𝑑 𝑡𝑒 𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (º𝐶)          𝑇𝑎 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑚𝑏 𝑖𝑒𝑛𝑡  𝑎𝑖𝑟  (º𝐶)  

 

It is very difficult to calculate the mean collector fluid temperature as it can vary from one day to 

another in the same month. The efficiency is influenced by the temperature difference between the 

collector and the environment; the smaller temperature difference, the higher the efficiency is, and 

the opposite. 

In summer, as the ambient temperature increases, so do the collector temperature but in a higher 

level, as the thermal conductivity of it is greater than the air. For that, the temperature difference is 

bigger, decreasing the efficiency of the solar collector. In winter happens the same thing reversed, the 

ambient and collector temperature is lower, but the difference is not as big as the one in summer.  

It is going to be calculated the 

efficiency of the collector, assuming 

that in the location being studied the 

maximum temperature difference 

between the collectors and the 

ambient will be 70ºC in summer, and 

the minimum will be 30ºC in winter. 

Checking the next graph of evolution 

of the efficiency respect the 

temperature difference, can be seen 

that at the maximum temperature 

mentioned the efficiency is 52% and 

at the minimum 75%. The graph is 

taken from the data sheet of the 

selected type of collector. 
Figure 10 - Efficiency respect ΔT graph 
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It is very difficult to calculate the mean collector fluid temperature as it can vary from one 

day to another in the same month. The efficiency is influenced by the temperature 

difference between the collector and the environment; the smaller temperature difference, 

the higher the efficiency is, and the opposite. 

In summer, as the ambient temperature increases, so does the collector temperature but 

at a higher level, as the thermal conductivity of it is greater than the air. For that, the 

temperature difference is bigger, decreasing the efficiency of the solar collector. In winter 

the same thing reversed happens, the ambient and collector temperature are lower, but 

the difference is not as significant as in summer. 

 
 

Figure 43: Collector efficiency vs ΔT. 

 

The efficiency of the collector is going to be calculated, assuming that in the location being 

studied the maximum temperature difference between the collectors and the ambient will 

be 70ºC in summer, and the minimum will be 30ºC in winter. Checking the next graph of 

evolution of the efficiency with respect to the temperature difference, it can be seen that 

at the maximum temperature mentioned the efficiency is 52% and at the minimum 75%. 

Figure 43 is taken from the data sheet of the selected type of collector. 

5.3.6 Climate conditions 

Other parameters that influence the solar energy production are the ambient temperature 

average and the solar irradiation. These values are taken from the Photovoltaic 
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7. Solar thermal energy 

7.1. Collector parameters 

To calculate the energy that the collector can provide, it must be taken into account its efficiency 

factors, as well as, the area of the collector: Ac = 13,57 m2 (included in the data sheet in Annex B). In 

the case of the chosen panels, ARCON Solar Collector type HT-HEAT store 35/10, those factors are the 

collector loss coefficients (a1 and a2), the monthly average 𝜏𝛼 product (𝜏𝛼) and the corrected collector 

heat removal factor (FR), among others. 

𝑎1 = 1.118 [ 
𝑊

𝑚2𝐾
 ]  ;  𝑎2 = 0.032 [ 

𝑊

𝑚2𝐾2
 ]  ;  𝐹𝑅 = 0.97 [ 

𝑊

𝑚2𝐾
 ]  ;   𝜏𝛼 = 0.96 

 

Those factors are needed in the next formula (equation taken from the collector data sheet) to 

calculate the collector efficiency (ηc), which also depends on the irradiation (G) and the efficiency 

when the difference of temperature is equal to 0 (ηo), the maximum efficiency of the collector:  

η𝑐 = η0 −
a1 (T𝑚 − T𝑎 )
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−

a2 (T𝑚 − T𝑎 )2
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𝑚2
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It is very difficult to calculate the mean collector fluid temperature as it can vary from one day to 

another in the same month. The efficiency is influenced by the temperature difference between the 

collector and the environment; the smaller temperature difference, the higher the efficiency is, and 

the opposite. 

In summer, as the ambient temperature increases, so do the collector temperature but in a higher 

level, as the thermal conductivity of it is greater than the air. For that, the temperature difference is 

bigger, decreasing the efficiency of the solar collector. In winter happens the same thing reversed, the 

ambient and collector temperature is lower, but the difference is not as big as the one in summer.  

It is going to be calculated the 

efficiency of the collector, assuming 

that in the location being studied the 

maximum temperature difference 

between the collectors and the 

ambient will be 70ºC in summer, and 

the minimum will be 30ºC in winter. 

Checking the next graph of evolution 

of the efficiency respect the 

temperature difference, can be seen 

that at the maximum temperature 

mentioned the efficiency is 52% and 

at the minimum 75%. The graph is 

taken from the data sheet of the 

selected type of collector. 
Figure 10 - Efficiency respect ΔT graph 
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Geographical Information System (PVGIS). The solar thermal collectors will be placed 

facing south to achieve the maximum efficiency concerning orientation. 

For using the PVGIS data, it needs to be determined the point in the world where the 

information is to be obtained for. In this case, the exact point of K2 building in the database 

map, inside the TUC campus in the city of Chania, Greece (Figure 44) is defined. This 

corresponds to the geographical coordinates of 35°31'57" North and 24°4'7" East, with 

Elevation of 139 m.a.s.l. (meters above the sea level). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Selected point for PVGIS data analysis (K2 TUC) 
 

The PVGIS-5 geo-temporal irradiation database (PVGIS-CMSAF) estimates the monthly 

irradiation data for the certain position desired, among other information such as the 

optimal inclination angle for the collectors, the average daytime temperature, the number 

of heating degree-days, etc., shown in Table. 
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Table 20: Information obtained from PVGIS 

 

The database provides the average optimal angle values in each month, depending on 

the sun positioning and the irradiance obtained. Since the chosen solar collector is 

stationary, its angle will be the given optimal inclination plane for the whole year, which is 

29 degrees. As can be seen in Table, the total irradiation at optimal angle (Hopt) is greater 

than the horizontal (Hh) or vertical one (H(90)). 

The Direct normal irradiation (DNI) shows the amount of solar radiation received per unit 

area in the case of a solar collector held always perpendicular (or normal) to the rays that 

come in a straight line from the direction of the sun at its current position in the sky. It could 

be interpreted as the maximum solar irradiance that the collector can obtain. This could 

be achieved with concentrating solar thermal installations and non-stationary/tracking 

devices. The difference between the maximum irradiance and the one at optimal angle is 

not very wide, meaning that even with a stationary solar collector high efficiency can be 

obtained. 

The annual irradiation deficit due to shadowing can be depreciated as there are no 

elements in the roof that can block the sun rays. 
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The PVGIS-5 geo-temporal irradiation database (PVGIS-CMSAF) estimates the monthly irradiation 

data for the certain position desired, among other information like the optimal inclination angle for 

the collectors, the average daytime temperature, the number of heating degree-days, etc., shown in 

Table 7. 

 

Table 7 - Information obtained from PVGIS 

 

𝐻ℎ −  𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡 𝑖𝑜𝑛 𝑜𝑛 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎 𝑙 𝑝𝑙𝑎𝑛𝑒 𝑇𝐿 −   𝐿𝑖𝑛𝑘𝑒 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 

𝐻𝑜𝑝𝑡 −   𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡 𝑖𝑜𝑛 𝑜𝑛 𝑜𝑝𝑡𝑖 𝑚𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 𝑝𝑙𝑎𝑛𝑒 𝐷/𝐺 − 𝑅𝑎𝑡𝑖 𝑜  𝑜𝑓 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑡𝑜 𝑔𝑙𝑜 𝑏𝑎𝑙 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖 𝑜𝑛 

𝐻(90) −   𝐼𝑟 𝑟 𝑎𝑑𝑖𝑎𝑡 𝑖𝑜𝑛 𝑜𝑛 𝑝𝑙𝑎𝑛𝑒 𝑎𝑡 𝑎𝑛 𝑔𝑙𝑒: 90 𝑑𝑒 𝑔 𝑇𝐷 −   𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑦𝑡𝑖𝑚 𝑒 𝑡𝑒𝑚 𝑝𝑒𝑟𝑎𝑡𝑢 𝑟𝑒 

𝐷𝑁𝐼 −   𝐷𝑖𝑟𝑒𝑐𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡 𝑖𝑜𝑛 𝑇24ℎ −   24ℎ𝑜𝑢𝑟  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑜𝑓 𝑡𝑒𝑚 𝑝𝑒𝑟𝑎𝑡𝑢 𝑟𝑒 

𝐼𝑜𝑝𝑡 −   𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖 𝑜𝑛 𝑁𝑑𝑑 −   𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑡𝑖𝑛 𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 − 𝑑𝑎𝑦𝑠 

 

The database provides with the average optimal angle in each month, depending on the sun 

positioning and the irradiance obtained. Since the chosen solar collector is stationary, its angle will be 

the given optimal inclination plane for the whole year, which is 29 degrees. As can be seen in Table 7, 

the total irradiation at optimal angle (Hopt) is greater than the horizontal (Hh) or vertical one (H(90)).  

The Direct normal irradiation (DNI) shows the amount of solar radiation received per unit area in the 

case of a solar collector held always perpendicular (or normal) to the rays that come in a straight line 

from the direction of the sun at its current position in the sky. It could be interpreted as the maximum 

solar irradiance that the collector can obtain. This could be achieved with concentrating solar thermal 

installations and non-stationary/tracking devices. The difference between the maximum irradiance 

and the one at optimal angle is not very wide, meaning that even with a stationary and non-electricity 

consuming solar collector can be obtained high efficiency. 

The annual irradiation deficit due to shadowing can be depreciated as there are no elements in the 

roof that can block the sun rays. 
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In Figure 45 and Figure 46 are shown the monthly average irradiance values from 2007 

until 2016, either horizontal, optimal angle and direct normal irradiation [kWh/m2]; and the 

monthly average temperature for the same period [deg C]. 
 

Figure 45: Monthly average irradiance 2007-2016 
 

Figure 46: Monthly average temperature 2007-2016 
 

Figure 47 shows the outline of horizon at the studied location. 

 

Figure 47: Horizon profile and sun path 

5.3.8 Geothermal energy 

To obtain the greatest amount of energy for the ground source heating and cooling, the 

soil characteristics must be considered. The best way to know precisely the 

geomorphological characteristics of the strata or layer that make up the ground, is 

executing a Thermal Response Test (TRT) in the same place where the vertical 

geothermal probe will be located. This allows to obtain the strata typology and the ground 

temperature evolution at different depths. 

Since this test is very expensive and its execution would not be inside the scope of the 

project, information by the Institute of Geology & Mineral Exploitation5 (IGME) and in the 
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ThermoMap6, was used regarding the different composition of the ground around the 

whole country. 

The initial plan is to develop a shallow geothermal system. The main reasons are that the 

the campus of Technical University of Crete has adequate temperature levels at low 

depths, plus this type of systems require lower capital investment. Moreover, the heat 

pumps will increase the water temperature coming from the ground until reaching the 

desired temperature. 

The hydrology is also an important factor that influences the ground temperature. When 

there is water flowing through any ground layer in the intended location of the Borehole 

Heat Exchanger, the temperature of the ground decreases and the thermal conductivity 

is higher due to better thermal properties of water against ground materials. The study of 

the hydrology of the terrain is essential, either for taking advantage of the underground 

water for higher thermal conductivity (heat extraction), or to avoid heat losses and know 

how to proceed in order to counteract its negative effects when the aim is keeping the heat 

underground (heat storage). 

Depending on the system needs, the conductivity can be an advantage or inconvenient. 

High conductivity can reheat the ground faster when it is being used for extraction, so it 

would be a benefit. However, if the ground is intended for heat storage, the heat would be 

wasted, as the high conductivity removes the heat faster. On the other hand, low 

conductivities do not affect too much the transport of heat, so it would be a good option for 

heat storage, and not for heat extraction, as ground would cool down without quick refill 

of heat. 

In this case of study, the ground will be used both for extraction and storage. It has been 

decided to place two different Underground Thermal Energy Storage Systems, one for 

storing heat and the other for storing cold. The main reason for this is to have two 

independent sources where energy can be stored or extracted at the same time. 

On the one hand, in summer, the demand for heating is very low, but the irradiance of the 

sun much greater than in winter. Since the system studied will be combined with solar 

collectors, these will produce heat and store it under the ground, as there is no need for 

heating in that period. In this case, cooling will be provided to the building. 

On the other hand, in winter, heat stored in the borehole will be extracted to cover the 

demand of heating in the building. And, as there are no cooling needs, the cooling circuit 

coming from the absorption heat pump will store the energy in another underground 

system intended for cooling. 
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5.3.9 Geology 

To know the ground properties in the place where the boreholes are going to be located, 

a study of the geology needs to be performed. For that, ThermoMap gives a good analysis 

of the ground characteristics in Chania, and specifically in the area of the Technical 

University of Crete (See original document in Annex C). The key aim of the ThermoMap 

project was to develop an efficient estimation system for the creation of pan-European 

superficial geothermal potential maps as a supportive and informative planning tool for 

installing (very) shallow vertical and horizontal geothermal installations. For this purpose, 

it has made use solely of existing geoscientific datasets and information which do not 

necessarily reflect the real on-site conditions with regard to all available parameters. 

 

Figure 48: ThermoMap analysis location 

 

Figure 48 shows the ground average thermal conductivity in Chania, identifying the area 

of TUC as medium-low thermal conductivity, which could be appropriate for the thermal 

storage activities.  

 

Possible limitations of usage 

Based on the specified data it can be stated that the chosen site is not located in a 

protected zone. The topographical analysis revealed a slope, less than 15°. Therefore, 

when installing a (very) shallow geothermal system, no issues with the venting and 

installation procedure should occur. The determined dominant soil type according to the 

acknowledged WRB classification system is here Cambisol. With this type of soil in 

principle no restrictions regarding a sustainable and efficient installation and operation of 

a (very) shallow geothermal system are known. 

 

Climatic conditions 
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The climate data, averaged over several years, results in a mean annual air temperature 

of 18.75 °C whereas the minimum annual air temperature is 9.00 °C. The amount of the 

annual precipitation is 665 mm. The maximum monthly precipitation of 120 mm occurs in 

the month(s) of January, December. This implies sub-humid conditions for the chosen 

area. 

USDA texture classification (Group level) ESDAC soil texture classification 

  

Figure 49: USDA texture classification (Group level) 
 

Figure 50: Ground composition 
 

Soil properties 

The dominant grain size distribution according to the USDA soil texture classification is 

loam all (Group level) (see Figure above for the USDA classes with estimated separates 

of sand, clay and silt), and according to the ESDAC soil texture classification is medium 

(see Figure above for the ESDAC classes with estimated separates of sand, clay and 

silt). 
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Geothermal situation 

The thermal heat conductivity of the soil matrix is defined essentially by its texture, water 

content and bulk density. At the chosen site, the values under unsaturated conditions can 

range from 0.83 W/mK to 1.07 W/mK. On the basis of humid/unsaturated conditions a 

value of 1.07 W/mK is probable. These parameters were calculated by use of the 

KERSTEN (1949) formulas. The heat capacity of NaN MJ/m³K is calculated according to 

formulas after DEHNER (2007). For these calculations, a bulk density of 1.3 g/cm³ was 

used which generally describes the relation between mass and volume. The analysis of 

these geoscientific parameters indicate that the chosen location has medium low 

conductivity as very Shallow Geothermal Potential (vSGP7) without any limitations. 

Summary of parameters given by the ThermoMap 

Soil characteristics 

Soil texture (ESDAC): Medium 

Hydrological system status: Humid/Unsaturated 

Climatic conditions 

Annual precipitation: 665 mm 

Annual mean temperature: 18.75 °C 

Annual minimum temperature: 9 °C 

Monthly maximum precipitation: 120 mm 

Thermal properties 

Heat conductivity: 1.07 W/mK 

Heat capacity DEHNER (2007): 2.03 MJ/m³K (0,564 kWh/m3K) 

Current vSGP value: 1.07 W/mK 

Minimum (arid/ unsaturated): 0.83 W/mK 

Maximum (humid/ unsaturated): 1.07 W/mK 

vSGP (very Shallow Geothermal Potential  - Test Area legend): Medium low conductivity 

Conclusion: This site is probably suitable for installing a GSHP system without limitations. 

5.3.10 Location 

The location of the Geothermal system needs to be as close as possible to the final loads, 

the K2 building, to avoid energy losses. In Figure 51 the location for the Underground 

Thermal Energy Storage Systems (UTES) is presented illustrating in blue the boreholes 

storing cold and in red the ones storing heat. It has been decided to place the cooling 

storage closer to the building instead of the heating as there is greater demand of the first 

type of thermal energy than the second, so there will be less energy losses. 
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Figure 51: Location of BHE systems 

 

5.3.11 Borehole heat exchanger 

The demand of heating and cooling energy to be supplied by the Combined System was 

calculated. The next step is make an initial design to establish the different characteristics 

of this type of system.  

The fundaments and materials used for obtaining the energy will be chosen and 

described, such us the type, number and configuration of boreholes, the heat pump size 

and capacity, as well as the material and extension of the thermal solar collectors. 

There are 3 main types of borehole heat exchangers: Simple Coaxial, Single U-pipe and 

Double U-pipe. The effectiveness of the BHEs is described by the Borehole Thermal 

Resistance (Rb): the lower Rb, the better heat transfer. 

The choice for the ground source extraction will be Single U-pipe. The reason is because, 

even though the Rb flow resistance is higher compared with the double U-pipe, the single 

U-pipe is much cheaper and easier to install, and in this specific case, the focus is not so 

on the energy extraction but storage, to optimise cost-efficiency. The simple Coaxial type 

has advantages as the low thermal short circuiting, the low Rb and the suitability for deep 

boreholes. However, it has important drawbacks, like high production costs, difficulty to 

handle and especially, that is very complicated to perform the so called co-axial pipe in 

the real construction. 

UTES 

HEATI
UT
ES 

COOLI
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Figure 52: Chosen configuration for BHEs 

 

Within all design options, separate boreholes in the configuration of the distribution have 

been chosen as shown in the scheme of Figure 52 having a square 5x5 configuration . 

5.3.12 Underground Thermal Energy Storage 

The term Underground Thermal Energy Storage (UTES) implies storing of excess heat 

from solar collectors and cooling form the Absorption Heat Pump, and utilizing during the 

time needed. A shunt valve directs the heat from the solar collector either to the ground 

via a ground heat exchanger, to heat pump or directly to the space heating circuit. 

The Borehole Heat Exchanger will work mainly as a seasonal heat storage element: on 

the one hand, extracting heat during the winter period while introducing cooling; on the 

other hand, in the summer period, heat will be injected into the ground and cooling energy 

will be extracted. 

In this system, the solar collector does not contribute directly to space heating and heating 

coils and unless the temperature needed matches with the one in the collector, the heat 

pump covers this base load. Stored heat from the solar collector in the ground contributes 

to space heating as the ground is the heat pump’s heat source. 
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A control system is needed to direct where the heat from the solar collector is being 

transferred. Hot water temperature can be a reference point for where the solar heat is 

used. Then, all the excess heat can be dumped to the boreholes. 
 

Figure 53: Ideal volume for UTES 

 

As analysed before, the ground heat capacity in the location being studied is 2.03 MJ/m³K 

(0,564 kWh/m3K). Knowing that the heating and cooling consumption is around 82,000 

kWh per year a rough estimate of 10,000 kWh/month is assumed.  A ground storage 

capacity for covering the needs of heating 2 days in the worst-case scenario, for the 

months of January or December is calculated. This capacity would be about 500 kWh, 

assuming some heat losses. To achieve this, a theoretic cube of 10 meter each side is 

required. 

5.3.13 Heat production 

For calculating the heat production of the ground source heating, GeoT*SOL is used,  to 

model a combined system of geothermal boreholes and solar thermal collectors. 

The location of the system is selected, (in this case Chania) so that the program can 

update the climate data for the calculations. After that, the configuration of the system is 

inserted in the program. The chosen configuration is “HP system with combination tank 

and solar thermal support”, as the one more closely related to the case being studied, for 

the part of heating production (Figure 54). 
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Figure 54: GeoT*SOL system selection 

 

Then, the data regarding the monthly heat consumption of the building needs to be 

introduced, in order to dimension the energy sources. Once the consumption is set, the 

parameters of the solar collectors, BHE and heat pump are also included, for the program 

to calculate the heat production and other specifications. 

The Heat Pump chosen for simulating the system in the program is Opthaet OH 55e, from 

CTA AG, with a nominal heating power of 64.7 kW. 
 

Figure 55: Heat Pump parameters 

 

The Borehole Heat Exchangers are set to be 25 units at 16.75 meters deep each, as the 

required heat probe length is 419 meters in total for covering the consumption. The infill 

will be simple grouting and the type of BHE is single U-pipe, as mentioned before. The 

pipe diameter is 100 mm, with a flow rate of 8,042 l/h. 
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Figure 56: Borehole Heat Exchangers parameters 
 

The ground source heat pump, is designed without considering the contribution of the 

solar collector, as the energy provided  will be redirected to the UTES. In this way, the 

dimensioning of the BHE has been made with the aim of covering the entire heat demand. 

Using this energy source alone would cool down the ground very fast, that is why the 

solar collector are for, apart from providing heat to the system, also to maintain the ground 

temperature above certain limit values. 

5.3.14 Geo-Solar system design 

In Figure 57 it is presented the design of the system intended to cover the heating and 

cooling needs of the building K2 in the Technical University of Crete. In red is shown the 

hot water circulation, in yellow the medium temperature water and in blue the chilled 

water. The following sketch is the conceptual representation of the system, so the 

dimensions and quantities are not the ones calculated for the real design. 
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Figure 57: Design of the Geo-Solar system 

 

The system is composed of 4 main elements: Solar Thermal Collectors, two 

arrangements of Borehole Heat Exchangers that form the Underground Thermal Energy 

Storage (UTES) for heating and cooling, Absorption Heat Pump and the Air Conditioning 

system. 
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The solar collectors convert irradiance from the sun and heat up the water going through 

their inner circuit. This warm water flows inside the Domestic Hot Water (DHW) tank and 

releases part of its heat. The DHW tank is filled with cold water from the grid, heated up 

by the Solar circuit and then supplied to the DHW circuit of the building. After releasing 

part of the heat in the tank, the solar circuit continues until the Underground Thermal 

Energy Storage for heating, transferring the rest of the heat to the Borehole by means of 

a Heat Exchanger, and going back to the Collectors to be heated up again and restart the 

loop. 

The energy transferred to the Borehole Heat Exchangers is either stored or used for air 

conditioning. For the second purpose, another Heat Exchanger releases heat to the 

intermediary circuit between the UTES and the Absorption Heat Pump. As explained 

before, this type of Heat Pump is able to provide heating and cooling with the same 

equipment. The heat coming from the UTES warms up the fluid-pair in the Generator, 

evaporating the refrigerant and separating the mixture. The warm evaporated refrigerant 

arrives to the Condenser at high pressure, where it releases the heat to the Hot Air 

Conditioning circuit and thereby, the refrigerant condenses. After that, the liquid pressure 

is reduced in an expansion valve. The refrigerant now at lower temperature, absorbs the 

heat in the Evaporator from the Cool Air Conditioning circuit, what makes it evaporate and 

flow back again to the Generator, where it gets mixed with the solution and becomes liquid 

to restart the loop. The heat absorbed in the Evaporator lowers the temperature of the 

circuit connected to it, which goes through the second Underground Thermal Energy 

Storage, intended for cooling. Similarly with heating storage, this second arrangement of 

boreholes stores and supplies cooling, depending on the needs, to the cooling circuit of 

air conditioning. 

If there is no simultaneous demand of heating and cooling at the same time, there will be 

always one type of thermal energy being used and another being stored (or both being 

stored in the case of no consumption). In this way the energy availability and the reliability 

of supply is secured. 

In the schematic the hot and cool air conditioning in different circuits is shown to make 

the representation easier to understand, but in the real case it consists of one circuit for 

both, providing hot or chilled air depending on the needs. 

The process explained would be the standard operation of the system. However, 

depending on the climate conditions and specific demands along the year, the circuits 

can be recirculated through different paths inside the same circuit, to achieve better 
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results. The additional paths according to which the circuit can be recirculated are 

represented in dashed lines in Figure 57. All together a closed loop system with different 

circuits is formed, with fluids never making contact with the environment or other fluids, 

eliminating health and safety issues. 
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9. Annexes 

Annex A – PVGIS climate information 
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Annex B – Solar Thermal Collector data sheet 
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Annex C – ThermoMap geological information 
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Annex D – Custom Data Collection System – Hardware overview 

 

 USB Host - USB Host 

 DC Power and USB Client - Power the board and act as client 

 LEDs 

o D2 is configured at boot to blink in a heartbeat pattern 

o D3 is configured at boot to light during microSD card accesses 

o D4 is configured at boot to light during CPU activity 

o D5 is configured at boot to light during eMMC accesses 

 Boot button 

o When there’s a SD card insert, the system will boot from SD card first, if you 

want to boot from eMMC, press this button and then power on. 

o Use as a normal button after boot, connect to GPIO_72 

 I2C Grove Interface - Connected to I2C2 

 Uart Grove Interface - Connected to UART2 

 Serial Debug - Connect to UART0, PIN1~PIN6: GND, NC, NC, RX, TX, NC, note 

that pin1 is near to the USB. 
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Annex E – PIN Map  

Each digital I/O pin has 8 different modes that can be selected, including GPIO. 

Note: In GPIO mode, each digital I/O can produce interrupts. 
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Annex F – PWMs and Timers 

Up to 8 digital I/O pins can be configured with pulse-width modulators (PWM) to produce 

signals to control motors or create pseudo analog voltage levels, without taking up any 

extra CPU cycles. 
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Annex G – Analog Inputs 

Make sure you don’t input more than 1.8V to the analog input pins. This is a single 12-bit 

analog-to-digital converter with 8 channels, 7 of which are made available on the headers. 
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Annex H – UART 

There is a dedicated header for getting to the UART0 pins and connecting a debug cable. 

Five additional serial ports are brought to the expansion headers, but one of them only has 

a single direction brought to the headers. 
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Annex I – I2C 

The first I2C bus is utilized for reading EEPROMS on cape add-on boards and can’t be 

used for other digital I/O operations without interfering with that function, but you can still 

use it to add other I2C devices at available addresses. The second I2C bus is available for 

you to configure and use. 
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Annex J – SPI 

For shifting out data fast, you might consider using one of the SPI ports. 
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Annex K - ESP8266 general features and ESP-12F Board 

ESP8266 is a chip with  complete and self-contained Wi-Fi networking capabilities, 

ESP8266 can perform either as a standalone application or as the slave to a host MCU. 

When ESP8266EX hosts the application, it promptly boots up from the flash. The integrated 

high-speed cache helps to increase the system performance and optimize the system 

memory.  

Moreover, ESP8266 can be applied to any micro-controller design as a Wi-Fi adaptor 

through SPI / SDIO or I2C / UART interfaces.  

ESP8266 – Main specs 

 Low power 32-bit RISC CPU: Tensilica Xtensa L106 running at 80 MHz 

 64 KiB of instruction RAM, 96 KiB of data RAM 

 External QSPI flash: 4 MiB 

 802.11 b/g/n 

 Integrated 10-bit ADC 

 Integrated TCP/IP protocol stack 

 Integrated TR switch, balun, LNA, power amplifier and matching network 

 Integrated PLL, regulators, and power management units 

 Supports antenna diversity 

 Wi-Fi 2.4 GHz, support WEP, WPA/WPA2 or Open 

 Support STA/AP/STA+AP operation modes 

 Support Smart Link Function for both Android and iOS devices 

 SDIO 2.0, (H) SPI, UART, I2C, I2S, IRDA, PWM, GPIO (16) 

 STBC, 1x1 MIMO, 2x1 MIMO 

 A-MPDU & A-MSDU aggregation and 0.4s guard interval 

 Deep sleep power <10uA (More than 2 years with a con battery CR2032) , Power 

down leakage current < 5uA 

 Wake up and transmit packets in < 2ms 

 Standby power consumption of < 1.0mW (DTIM3) 

 +20dBm output power in 802.11b mode 

 Operating temperature range -40C ~ 125C 

 FCC, CE, and ROSH certified 
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ESP8266 Functional Block Diagram 

As board we have chosen an ESP-12F as peripheral smart devices for reading sensors; 

this board mount  the ESP8266 chip and provides 

 20 available PINS 

 PCB trace as antenna, 

 mm 24.0 × 16.0, 

 FCC and CE approved 

 4  MiB Flash  
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Open source SDKs, for the chosen board, include: 

 NodeMCU — A Lua-based firmware. 

 Arduino — A C++ based firmware. This core enables the ESP8266 CPU and its 

Wi-Fi components to be programmed like any other Arduino device. The ESP8266 

Arduino Core is available through GitHub. 

 MicroPython — A port of MicroPython (an implementation of Python for embedded 

devices) to the ESP8266 platform. 

 ESP8266 BASIC — An open source basic interpreter specifically tailored for the 

internet of things. Self hosting browser based development environment. 

 Zbasic for ESP8266 — A subset of Microsoft's widely used Visual Basic 6 which 

has been adapted as a control language for the ZX microcontroller family and the 

ESP8266. 

 Espruino — An actively maintained JavaScript SDK and firmware, closely 

emulating Node.js. Supports a few MCUs, including the ESP8266. 

 Mongoose Firmware — An open source firmware with complimentary cloud 

service.[11] 

 ESP-Open-SDK — Free and open (as much as possible) integrated SDK for 

ESP8266/ESP8285 chips. 

 ESP-Open-RTOS — Open source FreeRTOS-based ESP8266 software 

framework. 
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Annex L – C++ Elman network testing Example 

// Description: Elman Network Example. 

 

#include <iostream> 

#include <iomanip> 

#include <cmath> 

#include <string> 

#include <ctime> 

#include <cstdlib> 

 

using namespace std; 

 

const int maxTests = 10000; 

const int maxSamples = 4; 

 

const int inputNeurons = 6; 

const int hiddenNeurons = 3; 

const int outputNeurons = 6; 

const int contextNeurons = 3; 

 

const double learnRate = 0.2;    //Rho. 

const int trainingReps = 2000; 

 

//beVector is the symbol used to start or end a sequence. 

double beVector[inputNeurons] = {1.0, 0.0, 0.0, 0.0, 0.0, 0.0}; 

 

                                     //  0    1    2    3    4    5 

double sampleInput[3][inputNeurons] = {{0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, 

                                       {0.0, 0.0, 0.0, 0.0, 0.0, 1.0}, 

                                       {0.0, 0.0, 1.0, 0.0, 0.0, 0.0}}; 

 

//Input to Hidden weights (with biases). 

double wih[inputNeurons + 1][hiddenNeurons]; 

 

//Context to Hidden weights (with biases). 

double wch[contextNeurons + 1][hiddenNeurons]; 

 

//Hidden to Output weights (with biases). 

double who[hiddenNeurons + 1][outputNeurons]; 

 

//Hidden to Context weights (no biases). 

double whc[outputNeurons + 1][contextNeurons]; 

 

//Activations. 

double inputs[inputNeurons]; 

double hidden[hiddenNeurons]; 

double target[outputNeurons]; 

double actual[outputNeurons]; 

double context[contextNeurons]; 

 

//Unit errors. 

double erro[outputNeurons]; 

double errh[hiddenNeurons]; 

 

 

void ElmanNetwork(); 

void testNetwork(); 

void feedForward(); 

void backPropagate(); 

void assignRandomWeights(); 

int getRandomNumber(); 

double sigmoid(double val); 

double sigmoidDerivative(double val); 

 

int main(){ 

 

    cout << fixed << setprecision(3) << endl;           //Format all the output. 

    srand((unsigned)time(0));   //Seed random number generator with system time. 

    ElmanNetwork(); 

    testNetwork(); 

 

    return 0; 

} 
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void ElmanNetwork(){ 

    double err; 

    int sample = 0; 

    int iterations = 0; 

    bool stopLoop = false; 

     

    assignRandomWeights(); 

 

    //Train the network. 

    do { 

 

        if(sample == 0){ 

            for(int i = 0; i <= (inputNeurons - 1); i++){ 

                inputs[i] = beVector[i]; 

            } // i 

        } else { 

            for(int i = 0; i <= (inputNeurons - 1); i++){ 

                inputs[i] = sampleInput[sample - 1][i]; 

            } // i 

        } 

 

        //After the samples are entered into the input units, the sample are 

        //then offset by one and entered into target-output units for 

        //later comparison. 

        if(sample == maxSamples - 1){ 

            for(int i = 0; i <= (inputNeurons - 1); i++){ 

                target[i] = beVector[i]; 

            } // i 

        } else { 

            for(int i = 0; i <= (inputNeurons - 1); i++){ 

                target[i] = sampleInput[sample][i]; 

            } // i 

        } 

 

        feedForward(); 

 

        err = 0.0; 

        for(int i = 0; i <= (outputNeurons - 1); i++){  

            err += sqrt(target[i] - actual[i]); 

        } // i 

        err = 0.5 * err; 

 

        if(iterations > trainingReps){ 

            stopLoop = true; 

        } 

        iterations += 1; 

 

        backPropagate(); 

 

        sample += 1; 

        if(sample == maxSamples){ 

            sample = 0; 

        } 

    } while(stopLoop == false); 

 

    cout << "Iterations = " << iterations << endl; 

} 

 

void testNetwork(){ 

    int index; 

    int randomNumber, predicted; 

    bool stopTest, stopSample, successful; 

 

    //Test the network with random input patterns. 

    stopTest = false; 

    for(int test = 0; test <= maxTests; test++){ 

         

        //Enter Beginning string. 

        inputs[0] = 1.0; 

        inputs[1] = 0.0; 

        inputs[2] = 0.0; 

        inputs[3] = 0.0; 

        inputs[4] = 0.0; 

        inputs[5] = 0.0; 

        cout << "(0) "; 
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        feedForward(); 

 

        stopSample = false; 

        successful = false; 

        index = 0; 

        randomNumber = 0; 

        predicted = 0; 

         

        do { 

 

            for(int i = 0; i <= 5; i++){ 

                cout << actual[i] << " "; 

                if(actual[i] >= 0.3){ 

                    //The output unit with the highest value (usually over 3.0) 

                    //is the network's predicted unit that it expects to appear 

                    //in the next input vector. 

                    //For example, if the 3rd output unit has the highest value, 

                    //the network expects the 3rd unit in the next input to 

                    //be 1.0 

                    //If the actual value isn't what it expected, the random 

                    //sequence has failed, and a new test sequence begins. 

                    predicted = i; 

                } 

            } // i 

            cout << "\n"; 

 

            randomNumber = getRandomNumber(); //Enter a random letter. 

             

            index += 1;              //Increment to the next position. 

            if(index == 5){ 

                stopSample = true; 

            } else { 

                cout << "(" << randomNumber << ") "; 

            } 

 

            for(int i = 0; i <= 5; i++){ 

                if(i == randomNumber){ 

                    inputs[i] = 1.0; 

                    if(i == predicted){ 

                        successful = true; 

                    } else { 

                        //Failure. Stop this sample and try a new sample. 

                        stopSample = true; 

                    } 

                } else { 

                    inputs[i] = 0.0; 

                } 

            } // i 

 

            feedForward(); 

 

        } while(stopSample == false); //Enter another letter into this sample sequence. 

 

        if((index > 4) && (successful == true)){ 

            //If the random sequence happens to be in the correct order, 

            //the network reports success. 

            cout << "Success." << endl; 

            cout << "Completed " << test << " tests." << endl; 

            stopTest = true; 

            break; 

        } else { 

            cout << "Failed." << endl; 

            if(test > maxTests){ 

                stopTest = true; 

                cout << "Completed " << test << " tests with no success." << endl; 

                break; 

            } 

        } 

    } // Test 

} 

 

void feedForward(){ 

    double sum; 

 

    //Calculate input and context connections to hidden layer. 

    for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 
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        sum = 0.0; 

        //from input to hidden... 

        for(int inp = 0; inp <= (inputNeurons - 1); inp++){ 

            sum += inputs[inp] * wih[inp][hid]; 

        } // inp 

        //from context to hidden... 

        for(int con = 0; con <= (contextNeurons - 1); con++){ 

            sum += context[con] * wch[con][hid]; 

        } // con 

        //Add in bias. 

        sum += wih[inputNeurons][hid]; 

        sum += wch[contextNeurons][hid]; 

        hidden[hid] = sigmoid(sum); 

    } // hid 

 

    //Calculate the hidden to output layer. 

    for(int out = 0; out <= (outputNeurons - 1); out++){ 

        sum = 0.0; 

        for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 

            sum += hidden[hid] * who[hid][out]; 

        } // hid 

 

        //Add in bias. 

        sum += who[hiddenNeurons][out]; 

        actual[out] = sigmoid(sum); 

    } // out 

 

    //Copy outputs of the hidden to context layer. 

    for(int con = 0; con <= (contextNeurons - 1); con++){ 

        context[con] = hidden[con]; 

    } // con 

 

} 

 

void backPropagate(){ 

 

    //Calculate the output layer error (step 3 for output cell). 

    for(int out = 0; out <= (outputNeurons - 1); out++){ 

        erro[out] = (target[out] - actual[out]) * sigmoidDerivative(actual[out]); 

    } // out 

 

    //Calculate the hidden layer error (step 3 for hidden cell). 

    for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 

        errh[hid] = 0.0; 

        for(int out = 0; out <= (outputNeurons - 1); out++){ 

            errh[hid] += erro[out] * who[hid][out]; 

        } // out 

        errh[hid] *= sigmoidDerivative(hidden[hid]); 

    } // hid 

 

    //Update the weights for the output layer (step 4). 

    for(int out = 0; out <= (outputNeurons - 1); out++){ 

        for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 

            who[hid][out] += (learnRate * erro[out] * hidden[hid]); 

        } // hid 

        //Update the bias. 

        who[hiddenNeurons][out] += (learnRate * erro[out]); 

    } // out 

 

    //Update the weights for the hidden layer (step 4). 

    for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 

        for(int inp = 0; inp <= (inputNeurons - 1); inp++){ 

            wih[inp][hid] += (learnRate * errh[hid] * inputs[inp]); 

        } // inp 

        //Update the bias. 

        wih[inputNeurons][hid] += (learnRate * errh[hid]); 

    } // hid 

 

} 

 

void assignRandomWeights(){ 

 

    for(int inp = 0; inp <= inputNeurons; inp++){ 

        for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 

            //Assign a random weight value between -0.5 and 0.5 

            wih[inp][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0)); 
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        } // hid 

    } // inp 

 

    for(int con = 0; con <= contextNeurons; con++){ 

        for(int hid = 0; hid <= (hiddenNeurons - 1); hid++){ 

            //Assign a random weight value between -0.5 and 0.5 

            wch[con][hid] = -0.5 + double(rand()/(RAND_MAX + 1.0)); 

        } // hid 

    } // con 

 

    for(int hid = 0; hid <= hiddenNeurons; hid++){ 

        for(int out = 0; out <= (outputNeurons - 1); out++){ 

            //Assign a random weight value between -0.5 and 0.5 

            who[hid][out] = -0.5 + double(rand()/(RAND_MAX + 1.0)); 

        } // out 

    } // hid 

 

    for(int out = 0; out <= outputNeurons; out++){ 

        for(int con = 0; con <= (contextNeurons - 1); con++){ 

            //These are all fixed weights set to 0.5 

            whc[out][con] = 0.5; 

        } // con 

    } // out 

 

} 

 

int getRandomNumber(){ 

    //Generate random value between 0 and 6. 

    return int(6*rand()/(RAND_MAX + 1.0)); 

} 

 

double sigmoid(double val){ 

    return (1.0 / (1.0 + exp(-val))); 

} 

 

double sigmoidDerivative(double val){ 

    return (val * (1.0 - val)); 

} 

 

 


