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Summary 

In this report various research and development activities related to the analysis 

and monitoring of smart microgrids are presented. Performance evaluation and 

control of smart microgrids at AEA, Loccioni and Technical University of Crete 

campus have been thoroughly explored. Algorithms for energy and asset 

management, successful exploitation of smart meters in smart grids, data 

mining techniques and energy predictions are exploited to shape new advanced 

modelling and control methodologies for future district and community 

applications. 

In this context, researchers from industry and academia have worked together 

to build and exchange knowledge in various fields as indicated in Table 0-1:   

Table 0-1: Seconded researchers and activities presented in Deliverable 4.3 
Researchers Sending 

Organisation 

Organisation of 

Destination 

Research Field 

Konstantinos 

Gobakis (author) 

Technical 
University of Crete 

Elgama - Elektronika Smart meter communication 

security and testing 

Nikos Kampelis 

(author) 

Technical 
University of Crete 

Elgama - Elektronika Mathematical model and 

design of flicker meter for 

application in smart meters 

Aggeliki 

Mavrigiannaki 

(author) 

Technical 
University of Crete 

AEA, Loccioni Prediction of excess power 

production of the Leaf micro-

grid 

Emmanuel Shittu 

(author) 

UBRUN Elgama - Elektronika Mathematical model and 

design of flicker meter for 

application in smart meters 

Konstantinos Stokos  CyI Elgama - Elektronika Smart meter communication 

security and testing 

Elli Tsirintoulaki  

(/ Nikos Kampelis) 

co-authors 

Technical 

University of Crete 

EXE Data analysis of smart 

metering, load predictions and 

sizing of PV system in TUC 

microgrid 

Lukas 

Samulevicious  

(work in progress) 

Elgama - 

Elektronika 

Technical University 

of Crete 

Smart static electricity meters 

PLC testing in TUC microgrid  
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1. Introduction  

Limitations in the functionality of the current power grid along with the 

increasing penetration of renewables, advanced metering infrastructure 

investments and the gradual ‘opening’ of markets to accommodate more 

players and new business models are all factors contributing to advancements 

in the field of Distributed Energy Resources (DER) management.      

This is a highly demanding and complicated process since it requires the 

continuous collection and systematic hierarchical analysis of multiple data 

related to the operating energy production, consumption and storage systems, 

facilities structural information, indoor conditions, human behavior, 

microclimate and weather conditions.  

State of the art techniques and scientific research link future district energy 

management applications with real time dynamic processing of data measured 

by a wide network of meters and sensors connected in the Internet of Things.   

Various techniques and tools can be potentially utilized to assist and facilitate 

this process including smart metering data analysis and processing, distributed 

energy resources management techniques, power forecasting, demand 

response and users engagement.  

Smart metering is crucial to transfer dynamically exploitable data in a reliable 

and effective way. Smart meters and advanced metering infrastructure can play 

an important role in managing the grid based on nodal data regarding 

consumption and / or production providing useful information for the 

identification of opportunities, vulnerabilities and solutions.  

Smart energy data is particularly important in specific when dealing with the 

high intermittency of renewable energy generation, volatility of loads and 

ultimately with balancing supply and demand. In this framework power quality 

in the grid is a crucial aspect related to reliability and robustness. Significant 

power disruptions, the malfunctioning or damage of connected equipment are 

linked to consumers’ perception for low quality of service. Most importantly, 

voltage fluctuations i.e. flickering can pose potential health risks depending on 

the occasion, severity and duration. Analysis and evaluation of power quality is 

therefore vital for the identification of problem sources and targeted 
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intervention. Consideration of distributed voltage flickering measurements 

provides a solid basis for spatial and time domain resolution.  

On the other hand the management of interconnected renewable resources, 

storage and loads as in the case of microgrids is receiving increasing attention 

from both industry and academia. This field is an open space for research and 

innovation linking different renewable generation technologies with different 

varying loads in real time. This is a challenging task involving design and 

optimisation considerations and robust controls, determined by the specificities 

of each case.  
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2. Methodology 

The methodology of the activities presented resides in the framework of the 

Smart GEMS project (Figure 2-1). Following research activities in the 

framework of Work Package 3 dealing with integrated design, operational 

efficiency, components, services and controls at building level, activities are 

now focusing on district level. Work package 4 is related to the optimised 

operation of renewables (D4.1), cost benefit analysis of polygeneration for 

smart communities (D4.2) and lessons / guidelines for scaling up existing smart 

/ micro grid infrastructure using mobile connectivity (D4.3).  

 

 
Figure 2-1: The methodological approach of smart technologies 

In this context, research activities focused largely on the two smart / micro grids 

of the project. TUC campus distributed power measurements were used to 

perform data interpretation, predictions using Artificial Neural Network models 

and sizing of PV installations. Leaf community distributed power measurements 

were exploited to predict excess power and develop a strategy for the charging 

of thermal storage. Testing of predictions demonstrated the feasibility of this 

approach and future actions have been drawn to determine how it can be 

utilized in practical applications in the steps to follow.  
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On the other hand staff exchange has been fruitful in the design and 

development of smart metering applications for voltage flickering and data 

security functions. Progress in this direction has been productive but also 

enlightening of the technical challenges faced by industrial partners and how 

academic partners be actively involved.    

In all the aforementioned cases links between the academic and industrial 

organisations have been strengthened and efforts are headed towards 

extended collaborations in the near future.     
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3. Research projects and activities in existing smart / micro 

grids  

3.1 Prediction of excess power production of the Leaf micro-
grid 

The requirement for clean energy, energy efficiency and cost-efficient energy 

management has given rise to the investigation of transition from traditional 

energy distribution grids to smart micro-grids. In traditional electricity grids 

energy is produced centrally and distributed to the various energy consumers 

that are connected to the grid. Traditional grids lack flexibility in power 

generation and load operation [1]. A micro-grid comprises distributed energy 

sources, energy loads and storage components, thus forming a semi-

autonomous entity with energy management capabilities. Moreover, a micro-

grid can operate connected to the main grid or in island mode [2]. For the 

purpose of reliable and efficient operation the Energy Management System 

(EMS) has become an essential component of micro-grids [2] [3].  

EMS assists in the optimization of power distribution within a micro-grid through 

the application of appropriate controls. Measuring and monitoring and control 

equipment connected through Information and Communication Technologies 

(ICT) are necessary for “building” an EMS. These assets combined with 

advanced energy management techniques make a micro-grid smart [1], [4], [5], 

[6]. A smart micro-grid communicates with its components and through the EMS 

controls its loads so as to achieve an efficient and cost-effective operation. In 

[7] an energy management algorithm is tested for optimum integration and 

operation of a PV array and a battery for serving a micro-grid’s loads. In [8] two 

algorithms are proposed and tested on an existing micro-grid, one for energy 

scheduling and one for demand response. Increased efficiency and occupant 

satisfaction has been achieved by the EMS applied in a University Campus [5].  

Load forecasting is invaluable to micro-grid energy management [5], [6], [8], [9]. 

Load forecasting for controlling charge and discharge of an electrical storage 

has been studied in [10] as well as in [11]. Depending on the forecasted period 

three types of forecasting are recognised [6], [9]: 
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 Short-term forecasting: 1h to 1week for optimum 

 Medium-term forecasting: 1week to 1year 

 Long-term forecasting:  1year to decades ahead 

Two methods for load forecasting have been recognised in literature, statistic 

mathematical models and artificial intelligence models [6], [9]. Artificial Neural 

Networks (ANN) are artificial intelligence models widely used for forecasting 

providing high accuracy [6], [9]. ANN have been extensively used for short-term 

load prediction [9], [11]. In [12] a multi-layer perceptron neural network that uses 

load and weather data was applied in order to forecast the daily load of a 

suburban area. In [13] a feed forward artificial neural network for hourly demand 

prediction is tested and the proposed algorithm is able to achieve a high 

prediction accuracy. 

The present report presents the 24h load forecasting of Leaf micro-grid using 

artificial neural networks. The purpose is to predict the day ahead excess 

production of the micro-grid so as to apply appropriate controls for its utilisation. 

3.1.1 The Leaf micro-grid 

The Leaf micro-grid is the micro-grid of the Leaf Community, in Angeli di 

Rosora, Italy (Figure 3-1).  

Figure 3-1 The Leaf Community microgrid 
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The energy production sources connected to the grid are: 

 a micro-hydropower plant, of 48kWp 

 four rooftop PV installations of total 421.3kWp  

 a dual axis Solar Tracker of 18kWp 

Five buildings are currently connected to the micro-grid: 

 The Leaf Lab, industrial building 

 The AEA, office building 

 The SUMMA, office building 

 The Leaf Farm, office building 

 The KITE, industrial building 

All buildings are equipped with ground water heat pumps (GWHP). A 224kWh 

electrical storage system and a thermal storage with heat capacity 

523.25kWh/K are also part of the micro-grid.  

All the previously mentioned power loads, renewables and storage components 

are connected in parallel to one single Point of Delivery (POD). All nodes as 

well as the collective operation of the micro-grid are monitored and controlled 

via My Leaf web based platform. 

The rooftop PVs are installed on four of the five interconnected buildings of the 

micro-grid. The production by each rooftop PV installation is consumed by the 

respective building first. If there is residual production, it is fed to the micro-grid. 

The production of the micro-hydropower plant is also fed to the micro-grid. 

When the production is not enough to cover the micro-grid’s loads, energy is 

withdrawn from the main grid. Energy is also given to the main utility grid if the 

demand of the micro-grid has been fulfilled, storages are fully charged and 

there is excess production. Regarding the storages, both have been recently 

connected to the grid and their operation and integration currently being tested.  

In the present work the integration of the thermal storage with the micro-grid is 

studied. Specifically, the availability of excess production in the micro-grid 

during weekends is of interest, so as to schedule the charging of the thermal 

storage using this excess production.  
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The thermal storage is connected to the Leaf Lab and the automation system 

for its charge and discharge has been set considering this building. Currently, 

the automation system is set to charge the thermal storage during weekends, 

when there is excess production from Leaf Lab’s PV. This kind of automation 

will charge the storage when energy is not needed form Leaf Lab, but it could 

be needed from the micro grid. Consequently, there is a requirement to change 

the settings so that the thermal storage will be charged when there is real 

excess production at micro-grid level. To this end, excess production of the 

micro-grid during weekends needs to be predicted in a robust way so that 

charging of the thermal storage is controlled accordingly.  

3.1.2 System description 

Ground water heat pumps 

There are three water to water heat pumps in Leaf Lab. GWHP1 is connected 

to the chilled beams installed in the offices for space heating and cooling. 

GWHP2 and GWHP3 are connected to four HVAC units that service the offices, 

the laboratory and the warehouse.  

The heat pumps are connected to the storage as shown in Figure 3-2. GWHP2 

and GWHP3 are used for charging the thermal storage. When the thermal 

storage is discharged, thermal energy is provided to the chilled beams, thus 

avoiding activation of GWHP1 during the first three days of the week.  

Thermal storage 

The TES is a water tank with dimensions 12.3 X 11 X 3.4 m (400m³).The water 

tank is buried and insulated with16 cm of XPS. The heat stored is sensible heat 

intended to cover the thermal loads of Leaf Lab. The thermal storage is charged 

during weekends using the excess production of the Leaf Labs’ rooftop PV 

installation. The excess production is used to operate GWHP2 and GWHP3. 
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System settings 

The charging process begins when there is an excess in Leaf Lab’s PV power 

production over 60kW. This is the threshold for activation of GWHP3. After 

activation of GWHP3, if there is excess of 50kW, GWHP2 is activated.  

The activation of the heat pumps for charging the thermal storage is allowed 

only during weekends, from 8:00am to 16:00pm in winter weekends and from 

7:00am to 18:00pm in summer weekends. The pumps are switched off at the 

end of each schedule or if PV production is significantly reduced over a 

sustained period of time. In case PV power is instantly reduced power is 

withdrawn from the grid in order to keep the heat pumps, which provide heat to 

the thermal storage, activated. For the deactivation of the heat pumps if the 

power from the grid is greater than 130kW GWHP3 is switched off and following 

this GWHP2 is switched off when energy withdrawn from the utility grid exceeds 

90kW. 

3.1.3 Power production data 

Power data as well as environmental data have been collected from the My 

Leaf platform. The power production of each energy source and the power 

taken from and exported to the main grid are being measured.  

The total production of the micro-grid can be calculated as follows: 

𝑃𝑀𝐺 = 𝑃𝐿𝐿𝑃𝑉 + 𝑃𝐴𝐸𝐴𝑃𝑉 + 𝑃𝑆𝑈𝑀𝑀𝐴𝑃𝑉 + 𝑃𝐾𝐼𝑇𝐸𝑃𝑉 + 𝑃𝑇𝑈𝑉 + 𝑃𝐻𝑌𝐷𝑅𝑂4      (1) 

Where: 

Figure 3-2: Thermal storage - GWHP connection schema 
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PLLPV is the power production of the Leaf Lab PV, in kW 

PAEAPV is the power production of the AEA PV, in kW 

PSUMMAPV is the power production of the SUMMA PV, in kW 

PKITEPV is the power production of the KITE PV, in kW 

PTUV is the power production of the solar tracker, in kW 

PHYDRO4 is the power production of the micro-hydro power plant, in kW 

The production of the micro-grid is self-consumed and excess production is 

given to the main grid. Since there are measured data of the power exported to 

the grid, the power production self-consumed at any time in the micro-grid can 

be calculated as follows: 

𝑃𝑆𝐶 =  𝑃𝑀𝐺 − 𝑃𝑂𝑈𝑇       (2) 

Where: 

PSC is the power production self-consumed, in kW 

POUT is the amount of excess power production that is exported to the main-

grid, in kW 

3.1.4 Data analysis 

In Figure 3-3 and Figure 3-4 it can be observed that there is a positive 

correlation between excess production and irradiance values, especially 

during peaks. 
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Figure 3-3: Excess production plotted along irradiance for the weekend 20/2/1026-
21/2/2016  

 

 

Figure 3-4: Excess production plotted along irradiance for the weekend 14/5/2017-

15/5/2017  

It can also be observed from Figure 5 that excess production follows the trend 

of total production. 
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Figure 3-5: Excess production plotted along total production 

3.1.5 Predictions using Artificial Neural Network (ANN)  

The collected data is used for prediction of excess power of the micro-grid. A 

good prediction of excess production has to be achieved. For this purpose the 

Matlab [14] Neural Network (NN) tool was utilised. Alternative combinations of 

input parameters were tested so as to investigate which set of input parameters 

were suitable for achieving an accurate prediction of excess production. 

Furthermore alternative training algorithms were tested and neural network 

structures in order to conclude which algorithm and structure could give the 

best prediction results. 

3.1.6 NN model setup 

The excess production of energy that can be used for charging the thermal 

storage can be determined from the measured data of power exported to the 

main grid. The prediction of excess production is a non-linear autoregressive 

problem. Past values of excess production as well as past values of day, time, 

irradiance, temperature and total production were used for prediction of excess 

power in 24h time horizon.  

From equations (1) and (2) it can be deduced that excess production is related 

to parameters that determine production. For prediction of PV production, day 

of the week, time of day, temperature and radiation have been used as inputs 

0

50

100

150

200

250

300

350

8
:0

0

9
:3

0

1
1

:0
0

1
2

:3
0

1
4

:0
0

1
5

:3
0

1
7

:0
0

1
8

:3
0

2
0

:0
0

2
1

:3
0

2
3

:0
0

0
:3

0

2
:0

0

3
:3

0

5
:0

0

6
:3

0

8
:0

0

9
:3

0

1
1

:0
0

1
2

:3
0

1
4

:0
0

1
5

:3
0

1
7

:0
0

1
8

:3
0

2
0

:0
0

kW
Weekend 6/8/2016-7/8/2016

excess production total production



645677 — SMART GEMS — H2020-MSCA-RISE-2014 
D4.3 Lessons learnt from the existing smart / micro grids. Guidelines for scaling-up the existing 

infrastructure using mobile connectivity  

 

 

20 
 

[10], [15]. Prediction of hydro power production using as inputs the river water 

level and machine water level was attempted in [10] but a high accuracy 

prediction could not be achieved. 

As a first step, day of the week, time of day and irradiance was used for 

prediction of excess production. Subsequently, a second prediction approach 

is tested using the first step’s inputs plus ambient air temperature as input. A 

third prediction model is attempted using as input parameters the day of the 

week, the time of the day and total micro-grid production since, as observed in 

Table 1, excess production follows the trend of total production.  

Table 1: Input data for each prediction 

 Inputs Target Output 

1st 

prediction 

day of week 

time of day 

irradiance 

excess 

production 

(POUT) 

excess 

production 

(POUT) 

2nd 

prediction 

day of week 

time of day 

irradiance 

temperature 

excess 

production 

(POUT) 

excess 

production 

(POUT) 

3rd 

prediction 

day of week 

time of day 

micro-grid 

production 

excess 

production 

(POUT) 

excess 

production 

(POUT) 
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3.2 Data analysis of smart metering, load prediction and sizing 

of PV systems in TUC microgrid 

District level energy planning and design must focus on a central goal or vision. 

This vision is realistically shaped by numerous factors such as the current 

status of the economy, the market, technological progress and available 

resources. Equally importantly the vision for energy planning needs to be 

ambitious and effective while counterbalancing human activity associated 

environmental impact, risks and challenges as identified by climate change at 

local and global scale.  

District level energy planning must be sustainable from an environmental and 

a financial perspective considering short, medium and long term steps. This 

involves in some cases complexities related to the conflicting priorities of 

stakeholders i.e. property owners, the level of engagement towards setting and 

reaching a specific goal, different opinions etc.     

Policy measures, regulatory reforms and finance instruments at EU level have 

targeted energy savings in the building sector, renewable energy generation 

and storage, smart grid deployment and advanced metering infrastructure 

developments, market liberalization, demand response etc. Despite the 

commitment to the achievement of specific goals linked to energy efficiency and 

CO2 equivalent emissions reduction at EU level, efforts need to be shared and 

owned by the majority of the developed and developing world for a reverse 

direction to take effect.   

At local level, the transformation of buildings and districts in zero, near zero or 

positive energy facilities is the vision which can lead the essential changes at 

global level.  

In the case of a university campus, numerous buildings, facilities and users co-

exist and make use of a subsystem of the main electrical power grid which can 

under certain conditions operate in autonomous or semi-independent mode.  

To achieve this a sustainable plan needs to be developed and implemented to 

encapsulate the following fundamental principles in a proactive, creative and 

innovative way: a) Minimization of energy consumption by increasing the 
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operational energy efficiency of facilities, b) maximization of energy production 

from renewables, c) effective integration of state of the art energy management 

techniques and technologies. 

The scope of this report is directly related to the development and integration 

of energy management techniques in a microgrid but also linked to the 

maximum utilization of energy production from renewables.  

In this respect the approach presented hereafter partly concerns the utilisation 

of data to establish robust, cost effective, environmentally sustainable energy 

management at district level. The proposed approach can be utilized at districts 

or communities of different operational context such as those hosting industrial 

or commercial activities.      

Work presented in this report deals with nodal data analysis of campus wide 

electrical energy consumption distributed measurements and neural network 

models power predictions. Power load and demand predictions can be 

exploited in advanced energy management applications when the utility grid is 

at stress or the cost of energy production is high as well as for the identification 

of energy and cost savings due to the implementation of demand response 

strategies.  

3.2.1 Analysis of the existing microgrid in TUC Campus  

The analysis of the existing status with regards to the facilities and the energy 

conversion systems has been made by exploiting data from various sources 

such as electromechanical installations designs, data from the installed energy 

meters in the Campus and information provided by the technical department of 

TUC [16]. 

Figure 3-6: TUC Campus and facilities 

 presents the different facilities of TUC as captured by Google Earth. Figure 3-7 

indicates the electric energy meters located in the campus of Technical 

University of Crete. Table 3-1 outlines the main energy transformation systems 

in the various departments. 
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A2 – Amphitheatre  

B2 – Restaurant 

D1 – Library (new building) 

D2 – Technical Service 

D3  \ 

D4   – PEM      

D5  /  

E1 – Library (old building) 

Z – Sports facilities 

H – Dormitories 

K1    \ 

K2   – ENVENG 

K3    /  

K4 – ARCH  

L – ECE/Sciences 

M1 \  

M2   \ 

M3     – MRED buildings 

M4   / 

M5 / 

 

• PEM – Production Engineering & 

Management  

• ENVENG – Environmental 

Engineering 

• ECE – Electrical and Computer 

Engineering 
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•  MRED – Mineral Resources 

Engineering Department 

• ARCH – Architectural Engineering  

Figure 3-6: TUC Campus and facilities 

 

 

Figure 3-7: Smart Meters map 

Table 3-1: Installed systems in the Campus of TUC 

Environmental 

Engineering 

Department 

Air Handling Unit System (AHU) Variable Refrigerate Volume Inverter 

with independent heating/cooling units multi-split type 

 K1: 3x20hp (14.71kW) in zones 1,2,3 and 1x10hp (7,35kW) in 

zone 4 

 K2 (old section): 9x15 hp (11.03kW) in the zones 1-11, 

2x3kW in the zones UPS 

 K2 (new section): 150kW 

 Ventilation: fresh air at 5.20m³/h for the K1 and 3.850m³/h for 

the K2 (old section) 

 K3: 240kW (6 systems 40kW heating-cooling) 

 K4: 240kW (6 systems 40kW heating-cooling) 
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 DHW (Domestic Hot Water): 11 solar collectors x 1.8m², 

storage tank DHW 800l (and boiler 600l) with electrical 

resistances 2x8kW 

 Lighting Units: 4x18W, 2x36W, 2x18W, 1x18W, 1x8W 

 Back-up diesel generator and UPS for lighting and safety 

loads  

 Low power rooftop and ground PV units 

Building of 

Sciences / 

Electrical and 

Computer 

Engineering 

 HVAC:13 AHU 950kW, 32 external units (VRV), 31x100.000 

BTU/h and 1x30.000 BTU/h (COP heating=2.86, 

COPcooling=2.66) 

 49x24.000 BTU/h, 103x18.000 BTU/h, 25x12.000 BTU/h, 

37x9.000 BTU/h 

 Lighting: 174 kW 

 Building Energy Management System 

 Back up diesel generator and UPS for lighting and safety 

loads 

PEM (Production 

Engineering 

Management)- 

University 

Facilities 

 HVAC:55kW A2 (amphitheater), 30 kW (Old Library), 

118.4kW (New Library), ~600 split units of 1.5kW 

 Diesel boilers 450.000kcal/h, 700.000kcal/h and 50.000kcal/h 

 Lighting: 4.63kWh/m² (D5) 

 UPS 

 Data centre 

MRED (Mineral 

Resources 

Engineering) 

 HVAC 800kW   

 Air-cooled water heat pump for heating and cooling needs of 

Mineral Resources Engineering (MRED) buildings, of 290 kW 

heating and cooling capacity. 

 DHW: Solar collectors in M2 and M3 with boiler 

 Lighting: 

 Back up diesel generator and UPS for lighting and safety 

loads 

Dormitories 

 HVAC: split units: 66x9000 btu/h, energy class A, SEER>=5, 

SCOP>=3.8 and 11x12000 btu/h, energy class A, SEER>=5, 

SCOP>=3.8).  

 DHW: air-cooled high temperature water heat pump, 68kW 

and COP>=3.4 energy class>=A. 

 Lighting:  
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 Building Energy Management System: Integrated control 

system for the energy efficient management of the split type air-

conditioning units 

Sports facilities / 

Street Lighting 

 DHW: solar thermal collectors  

 Lighting: 80 x 80W LED  

 125 x 250W=31.250W 

 133 x 125W=16.625W 

 HQI-E OSRAM 250W 

 HPI Philips 250W 

 H125/E27/Kolorlux of General Electric 125W 

 

Figure 3-8 is a schematic of the TUC electrical microgrid. In particular: 

 PEM department buildings and University Facilities are powered by two 

medium to low voltage transformers that operate in an alternate fashion.  

 MRED department buildings are connected to the main grid via two 

medium to low voltage transformers that operate in parallel and 

simultaneously. Buildings K1 and K2 (old section) of the ENVENG 

complex are also connected to one of these transformers.  

 Electronics and Computer Engineering (ECE) buildings are fed by two 

medium to low voltage transformers, one of which also provides energy 

to the new K2 building section, K3 and K4 of the ENVENG department. 

 Student dormitories are connected to a separate medium to low voltage 

transformer.  
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Figure 3-8: Diagram of the electrical power grid at TUC campus 

3.2.2 Energy and Power Measurements Data Analysis 

Indexes that were used for the data analysis are listed below: 

• Peak Power (kW) 

• Mean Power (kW) 

• Standard Deviation (kW) 

• Energy Consumption (kWh)  

3.2.3 Load predictions using Artificial Neural Network models 

Artificial Neural Network (ANN) models are conceived on the basis of biological 

nervous systems to imitate information processing and evolution. ANNs 

assimilate the natural bonds of neurons and their high level interconnection to 

model complex systems. In the case of predictions ANNs can be more effective 

compared to statistical, linear or non-linear programming techniques.  

ANN models have been used for years in different areas of engineering, 

science and business to deal with complexity and nonlinearity of data sets. 

They present capabilities such as adaptive learning, self-organisation, real time 

operation, fault tolerance and approximation of complex nonlinear functions. 

ANN modelling is a powerful tool for predicting parameters related to river flows, 



645677 — SMART GEMS — H2020-MSCA-RISE-2014 
D4.3 Lessons learnt from the existing smart / micro grids. Guidelines for scaling-up the existing 

infrastructure using mobile connectivity  

 

 

28 
 

wind speed, electricity prices, power production and demand, economic growth, 

stock market and more [17]–[21]. 

A typical neural network model consists of three main layers: input, hidden 

layers and output, as shown in Figure 3-9: The structure of a Back Propagation 

ANNFigure 3-9.  

 

Figure 3-9: The structure of a Back Propagation ANN 

Data of meters 1, 3, 6, 8 and 15 was used to predict the power load (kW) of 

campus facilities in the next 8, 12 and 24 hours. Neural Network Dynamic Time-

Series application of Matlab, Nonlinear Autoregressive with External 

(Exogenous) Input problem definition and Levenberg-Marquardt algorithm for 

the training process was deployed [20], [22]. The day of the week, hour of the 

day, and ambient temperature (°C) were used as inputs. Consumed electric 

power (kW) data was set as target.  

3.2.4 Design of PV system at TUC campus 

Sunny Design 3 software was used for the modeling of the PV systems. For the 

PV modules, MPE 250 PS 60 EB (03/2014) with nominal power 250Wp is used 

connected in series to the STP 150000TL-10 type inverter. In Figure 3-10 and 

Figure 3-11 technical specifications of the selected PV modules and inverter 

are provided. 
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Figure 3-10: Information on the selected PV modules 

 

Figure 3-11: Information on the selected inverter model 

For the better understanding of the relation between the energy production 

profile of the PV systems and the energy consumption profile of the TUC 

campus, load matching [23] is determined based on the equation: 

𝑓𝑙𝑜𝑎𝑑,𝑖 = 𝑚𝑖𝑛 [1,
𝑜𝑛 𝑠𝑖𝑡𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑙𝑜𝑎𝑑
] × 100 [%] 

 

Where 𝑖 is the time interval i.e. hour, day, month.  
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Scenario 1: 539kWp PV system 

In Scenario 1, the PV system configuration consists of 2,156 PV modules and 

44 PV inverters. Each inverter is connected to two arrays of 21 PV modules in 

series each (connected to the 2xA inputs of the inverter) and one array of 7 PV 

modules in series (connected to the B input of the inverter) as shown in Figure 

3-12: Architecture of the PV systemFigure 3-12. 

 
Figure 3-12: Architecture of the PV system 

The design considerations related to the compatibility and performance of the 

proposed PV / inverter configuration and cable losses calculations are 

presented in Figure 3-13 and Figure 3-14 respectively. 

 
Figure 3-13: The performance of the inverter 
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Figure 3-14: The configuration of the system 

Scenario 2: 1MWp PV System 

In the 2nd scenario the proposed system consists of 4,000 PV modules and 80 

PV inverters. The configuration consists of 2 arrays (2 A exits) of 22 PV modules 

in series each and 1 array (1 B exit) of 6 PV module connected to each inverter 

as demonstrated in Figure 3-15. 

 

Figure 3-15: Architecture of the PV system 

The design considerations of the proposed PV / inverter system including 

compatibility and performance are presented in Figure 3-16. Cable 

dimensioning and losses are indicated in Figure 3-17. 
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Figure 3-16: The performance of the inverter 
 

 
Figure 3-17: The configuration of the system 
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3.3 Voltage flicker meter design for implementation is smart 
meters 

The universal IEC 61000-4-15 standard provides the functional and design 

specifications of an analogue or digital flicker measuring device (called 

Flickermeter) with EMC [24]. According to the IEEE, flicker is defined as “the 

subjective impression of fluctuating luminance caused by voltage fluctuations”, 

that becomes an annoyance or a disturbance above the defined flicker intensity 

threshold [25]. The flicker phenomenon i.e. the fluctuating luminance 

“subjective impression” refers to the variation in illuminance fluctuations 

disturbance experienced by different individuals at a defined flicker severity, 

which causes headache, visual tiredness, and could trigger epileptic seizures 

in individuals diagnosed of epilepsy [24]–[26]. 

 

IEC 61000-4-15 standard has been developed through a series of 

advancements from the conception of the flicker measurement method in the 

1980s by UIE, to its 1st publishing in 1992 as IEC 868 standard. IEC 868 defined 

the short-term flicker severity as the fundamental parameter to evaluate flicker 

disturbance. The evolution to the most current IEC 61000-4-15 standard 

published in June 2011 has primary focused on the improvement of results 

quality from Flickermeter [27]. One gap in the application of IEC Flickermeter 

based on IEC 61000-4-15 standard is that the incandescent type lamp was 

used as a reference point in its functional and design specifications at 120 V 

and 230 V, 50 Hz and 60 Hz voltage and frequency levels. This presents a 

limitation in the application of IEC Flickermeter to account for the current 

extensive use of efficient lighting technologies such as LED, CFLs and halogen 

lamps [24], [27], [28].  

IEC 61000-4-15 flickermeter is broken down into the following blocks: 

 Block 1 – Input Voltage Adaptor: This constitutes an input signal scaler (that 

uses an appropriate transducer) with the objective of making flicker severity 

measurements independent from the input voltage level; it scales the applied 

amplitude modulated input voltage u(t) to modulated RMS voltage, VRMS, and 

then sampled using analogue-to-digital converter that regulates the modulated 

VRMS level to the constant voltage reference value VR. [24], [29], [30]. 
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 Block 2 – Squaring multiplier: This is a demodulator that recovers voltage 

fluctuation by squaring the output of block 1 (VRMS – scaled in block 1 from u(t) 

to a reference level VR in order to simulate the correct behaviour of an 

incandescent  [24], [29], [30]. 

 Block 3 – Weighing filters: This part of the circuit is responsible for the eye 

response simulation to an incandescent lamp consisting of three cascaded 

filters, with a range selector for sensitivity measurement. The first two 

consecutive filters are part of the demodulation process/system, namely 1st-

order high-pass filter with a 3 dB cut-off frequency of 0.05Hz, and 6th-order low-

pass Butterworth filter with a 3 dB cut-off frequency of 35Hz (implemented as 

three cascades of second-order filter). The third also referred to as the 

weighting filter models the lamp-eye system [24], [29], [30]. 

 Block 4 – Squaring and smoothing: This models the eye-brain system and low-

pass filter that simulates the eye-brain response and perceptual storage effect 

of flickering in the human brain. The output Pinst of this block is obtained by 

squaring the output of block 3 filtered using a 1st-order low pass filter at t = 0.3 

s [24], [29], [30].  

 Block 5 – Online statistical analysis: A statistical approach is deployed to 

evaluate Pst.. Pinst is normalised to evaluate Pst for a time period of Tshort = 10 

min “when a sine wave-modulated 50 Hz input signal, with a modulation 

frequency of 8.8 Hz and a modulation depth of 0.25% (Voltage fluctuation 

∆U/U, %), is applied” [29]. 
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Figure 3-18: “Functional diagram of IEC Flickermeter” [24], “IEC 61000-4-15 Flickermeter block 
diagram” [29] and “Signal flow diagram of the IEC Flickermeter (block 1 and block 5 are not 
necessary for the calculation) [31] 

 
The methodology for evaluating the flicker intensity is defined by the two 

performance indicators listed below: 

 Short-term severity (Pst): Pst is applicable in the evaluation of individual 

source disturbance characterised by short-duty cycle such as rolling mills, 

residential domestic appliances etc. Unless otherwise specified, Pst is 
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usually measured over 10 min period (Tshort). Different time intervals may be 

used when carrying out case-studies or surveys on power quality. The 

formula used to evaluate Pst for a time period of Tshort is derived from time-

at-level statistics, where the suffix “s” specifies the use of smoothed values 

in block 4 of the IEC Flickermeter (see Figure 3-18) [24], [30]: 

 

𝑷𝒔𝒕 =  √𝟎. 𝟎𝟑𝟏𝟒𝑷𝟎.𝟏 + 𝟎. 𝟎𝟓𝟐𝟓𝟏𝒔 + 𝟎. 𝟎𝟔𝟓𝟕𝑷𝟑𝒔 + 𝟎. 𝟐𝟖𝑷𝟏𝟎𝒔 + 𝟎. 𝟎𝟖𝑷𝟓𝟎𝒔  

(Eq. 1) 
 

The above formula is obtained from block 5 classifier of a functional IEC 

Flickermeter (see Figure 3-18). The indication of exceeded flicker level for 

0.1%, 1%, 3%, 10% and 50% during the period of observation are 

represented by percentiles variable P0.1, P1, P3, P10 and P50 respectively. The 

formulas of these variables are presented below [24]: 

 

P50s =  (P30 +  P50 +  P80)/3  (Eq. 2) 

P10s =  (P6 +  P8 +  P10 +  P13 + P17)/3 (Eq. 3) 

P3s =  (P2.2 +  P3 + P4)/3  (Eq. 4) 

P1s =  (P0.7 +  P1 +  P1.5)/3  (Eq. 5) 

 

 Long-term severity (Plt): Plt is applicable in the evaluation of combined effect 

of multiple disturbances characterised with long and variable duty cycle 

such as arc furnaces. Unless otherwise specified, Plt is usually measured 

over 2 h period (Tlong = N Tshort, where N = 12), The formula used to evaluate 

Plt for a time period of Tlong = 2 h is [24], [30]: 

𝑃𝑙𝑡 = √
∑ 𝑃𝑠𝑡𝑖

3𝑁
𝑖=1

𝑁

3

  (Eq. 6) 

Note: 𝑃𝑠𝑡𝑖
 are successive readings of Pst for I = 1, 2, 3…[24]. 

3.3.1 Infinite Impulse Response Filter Design  

Problem Definition 

IIR filter with the input-output relationship is modelled by (Eq. 7, with a transfer 

function described by (Eq. 8 [32]. 
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𝑦(𝑛) =  − ∑ 𝑏(𝑘)𝑀
𝑘 = 1 𝑦(𝑛 − 𝑘) +  ∑ 𝑎(𝑘)𝑁

𝑘 = 0 𝑥(𝑛 − 𝑘)   (Eq. 7) 
 

𝑤ℎ𝑒𝑟𝑒 𝑦(𝑛) 𝑖𝑠 𝑡ℎ𝑒 𝐼𝐼𝑅 𝑓𝑖𝑙𝑡𝑒𝑟’𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑛𝑑 𝑥(𝑛) 𝑖𝑠 𝑡ℎ𝑒 𝐼𝐼𝑅 𝑓𝑖𝑙𝑡𝑒𝑟’𝑠 𝑖𝑛𝑝𝑢𝑡 
 
The equation is re-arranged to take the following form; 
 

 ∑ 𝑏(𝑘)

𝑀

𝑘 = 0

𝑦(𝑛 − 𝑘) =  ∑ 𝑎(𝑘)

𝑁

𝑘 = 0

𝑥(𝑛 − 𝑘) 

 

𝑤𝑖𝑡ℎ 𝑏(0) = 1, ∑ 𝑏(𝑘)

𝑀

𝑘 = 1

[𝑧−𝑘𝑦(𝑛)] =  ∑ 𝑎(𝑘)

𝑁

𝑘 = 0

[𝑧−𝑘𝑥(𝑛)] 

 

where 𝑧−𝑘 is considered as a unit delay operator, i.e. a delay of one sample 
interval. 
 

∴  𝑧−𝑘𝑥(𝑛) = 𝑥(𝑛 − 𝑘) 
 

Therefore, the transfer function in terms of 𝑧 is: 
 

𝐻(𝑧) =
𝑦(𝑛)

𝑥(𝑛)
=

∑ 𝑎(𝑘)𝑧−𝑘𝑁
𝑘=0

∑ 𝑏(𝑘)𝑧−𝑘𝑀
𝑘=0

=
𝑎(0) + 𝑎(1)𝑧−1 +⋯+ 𝑎(𝑁)𝑧−𝑁

1+𝑏(1)𝑧−1 + 𝑏(2)𝑧−2 +⋯+ 𝑏(𝑀)𝑧−𝑀  (Eq. 8) 

 

𝑤ℎ𝑒𝑟𝑒 𝐻(𝑧) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑎(𝑘)𝑎𝑛𝑑 𝑏(𝑘) 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
 
Therefore, the aim of this section is to evaluate all filter coefficients in block 3 

and block 4. 

3.3.2 Bilinear Transformation Method 

The term bilinear refers to the fact that the numerator and denominator of the 

transformation equation are linear in form. Bilinear transformation method also 

referred to as the bilinear z-transform is carried out via change of variables 

given in (Eq. 9. It uses frequency domain method to transform analogue filter 

transfer function H(s) to digital transfer function H(z) [32]. 

𝑠 =
2

𝑇

(𝑧 − 1)

(𝑧 +1)
=  2𝑓𝑆

(𝑧 − 1)

(𝑧 +1)
   (Eq. 9) 

where s is the Laplace complex variable, and z is a complex variable, hence 

giving rise to complex polynomials of H(z) where digital frequency response 

can be obtained [32]. 

 

𝑧 =  𝑒𝑗𝜔𝑇  (Eq. 10) 
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where 𝜔 is the digital frequency response. 

The relationship between analogue and digital frequencies is governed by   (Eq. 

11 below [32]: 

𝜔′ =  
2

𝑇
 tan (

𝜔𝑇

2
)  (Eq. 11) 

where 

𝜔′𝑖𝑠 𝑡ℎ𝑒 analogue frequency response and 𝜔 𝑖𝑠 𝑡ℎ𝑒 digital frequency response  

Figure 3-19 is a frequency warping graph that describes the relationship 

between 𝜔′and 𝜔; it shows an approximate linear relationship and non-linear 

relationship for small values of 𝜔, and increasing values (higher values) of 𝜔 

respectively. This non-linearity leads to warping (or distortion) of 𝜔′. Also, 

Figure 3-19 shows three passbands of constants width and regular spacing for 

𝜔, and unequal width and irregular spacing after the application of bilinear 

transformation [32]. 

 

Figure 3-19: Frequency warping (or distortion) [32] 

 

This distortion effect can be corrected via pre-warping (or scaling) of the 

analogue filter (analogue frequency scaling) by making s equivalent to sK 

(where “K is some constant”). The required pre-warping is defined by (Eq. 12 

[32]; 

𝑢0 =  
2

𝑇
 tan (

𝑇𝜔0

2
)  (Eq. 12) 
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where u0 is the critical frequency of the analogue filter, and 𝜔0is the desired 

critical frequency of the digital filter. 

Pre-warping with bilinear transformation is defined in (Eq. 13 [32]; 

𝑢0 =  
2𝐾

𝑇
 tan (

𝑇𝜔0

2
)  (Eq. 13) 

(Eq. 14 is then derived by substituting (Eq. 9 in terms of 2/T into (Eq. 13 ; 

∴ 𝑢0 =  
𝑠 (𝑧 + 1) 𝐾

(𝑧 − 1)
 tan (

𝑇𝜔0

2
) 

𝑠𝐾 ≈ 𝑠 =  
𝑢0

tan(
𝑇𝜔0

2
)
 
(𝑧−1)

(𝑧+1)
= 𝛼 

(𝑧−1)

(𝑧+1)
 (𝑛𝑜𝑡𝑒: 𝛼 =  

𝑢0

tan(
𝑇𝜔0

2
)
)   (Eq. 14) 

3.3.3 IEC Flickermeter Filter Transfer Functions 

The filter design and implementation is based on [31], [33], [34], [35]. 

Block 3 – 1st-Order High Pass Filter 

Analogue frequency response of the 1st-order high pass filter with a 3dB cut-off 

frequency fc of 0.05Hz is govern by (Eq. 15: 

𝐹𝐻𝑃1𝑠𝑡
(𝑠) =  

𝑠𝜏

1+ 𝑠𝜏
=

𝑠 𝜔𝑐⁄

1+ 𝑠 𝜔𝑐⁄
  (Eq. 15) 

 

where 𝜔𝑐 = 2𝜋𝑓𝑐 = 2𝜋0.05 𝑠−1, 𝜏 =
1

2𝜋0.05
= 3.1831 𝑠, 𝑓𝑠 = 100 𝐻𝑧 

 
(Eq. 16 governs transfer function in the z-domain, obtained by applying bilinear 

transformation method: 

 

𝐻𝐻𝑃1𝑠𝑡
(𝑧) =

𝑦(𝑛)

𝑥(𝑛)
=

∑ 𝑎(𝑘𝑁
𝑘=0 )𝑧−𝑘

∑ 𝑏(𝑘𝑀
𝑘=0 )𝑧−𝑘 =

𝑎(0) + 𝑎(1)𝑧−1 

1+𝑏(1)𝑧−1 = 𝐶
1 + 𝑎𝑧−1

1 + 𝑏𝑧−1  (Eq. 16) 

 

where 𝐶 =
2𝜋𝑓𝑆 

(1+ 2𝜋𝑓𝑆)
 , 𝑎 =  −1, 𝑏 =  

(1− 2𝜋𝑓𝑆)

(1+ 2𝜋𝑓𝑆)
 and fs is the sampling rate 

∴ 𝐻𝐻𝑃1𝑠𝑡
(𝑧) =

(
2𝜋𝑓𝑆 

1 +  2𝜋𝑓𝑆
) − (

2𝜋𝑓𝑆 
(1 +  2𝜋𝑓𝑆)

) 𝑧−1

1 +  (
(1 −  2𝜋𝑓𝑆)
(1 +  2𝜋𝑓𝑆)

) 𝑧−1

 

Therefore, the 1st-order high pass filter is represented by differential equations 

(Eq. 17: 

𝑦(𝑛) =  (
2𝜋𝑓𝑆  

1 +  2𝜋𝑓𝑆
) − (

2𝜋𝑓𝑆  

(1 +  2𝜋𝑓𝑆)
) 𝑧−1 

𝑦𝑛 = −𝑏(1)𝑦(𝑛 − 1) + 𝑎(0)𝑥(𝑛) + 𝑎(1)(𝑥 − 1)  (Eq. 17) 
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∴ 𝑦𝑛 =  − (
(1 −  2𝜋𝑓𝑆)

(1 +  2𝜋𝑓𝑆)
) 𝑦(𝑛 − 1) +  (

2𝜋𝑓𝑆 

1 +  2𝜋𝑓𝑆
) 𝑥(𝑛) − (

2𝜋𝑓𝑆  

(1 +  2𝜋𝑓𝑆)
) 𝑥(𝑛 − 1)  

 

Table 3-2: 1st-order high pass filter coefficients for G3G balance meters to be implemented in 
230V lamp based on sampling frequency of 100 Hz 
 

1st-order high pass filter 
coefficients 

 
Formula 

 
Values 

 

𝑎0 (
2𝜋𝑓𝑆  

1 +  2𝜋𝑓𝑆
) 

 
0.99841 

 

𝑎1 − (
2𝜋𝑓𝑆 

(1 +  2𝜋𝑓𝑆)
) 

  
-0.99841 

 

𝑏1 
(1 −  2𝜋𝑓𝑆)

(1 +  2𝜋𝑓𝑆)
 

 
             -0.99682 

 

Block 3 – 6th-Order Low Pass Butterworth Filter 

 
Analogue frequency response of the pre-warp 6th-order Butterworth low pass 

filter is given by (Eq. 18: 

𝐹𝐵𝑊6𝑡ℎ
(𝑠) =  

1

∑ 𝑎𝑖(
𝑠

𝜔𝑐
′ )

𝑖
6
𝑖=1

  (Eq. 18) 

where 𝜔𝑐 = 2𝜋𝑓𝑐 = 2𝜋35 𝑠−1 𝑎𝑛𝑑 𝜔𝑐
′ = tan (

𝑤𝑐

2𝑓𝑠
) 

(Eq. 19 governs transfer function in the z-domain, obtained by subdividing the 

filter into 3 cascades of 2nd-order filters and applying bilinear transformation 

method: 

𝐻𝐵𝑊6𝑡ℎ
(𝑧) = 𝐶 ∏

𝑎𝑜𝑘 + 𝑎1𝑘𝑧−1 + 𝑎2𝑘𝑧−2

1 + 𝑏𝑧−1+ 𝑏2𝑘𝑧−2
3
𝑘=1  (Eq. 19) 

Therefore, the 6th-order Butterworth low pass filter is represented by 3 

differential equations ((Eq. 20, (Eq. 21, and (Eq. 22): 

𝑦𝑛,1 = 𝛢1(𝑥𝑛,1 + 2𝑥𝑛−1,1 + 𝑥𝑛−2,1) − 𝐵1𝑦𝑛−1,1 − 𝐷1𝑦𝑛−2,1  (Eq. 20) 

𝑦𝑛,2 = 𝐸2(𝑥𝑛,2 + 2𝑥𝑛−1,2 + 𝑥𝑛−2,2) − 𝐹2𝑦𝑛−1,2 − 𝐺2𝑦𝑛−2,2  (Eq. 21) 

𝑦𝑛,3 = 𝐻3(𝑥𝑛,3 + 2𝑥𝑛−1,3 + 𝑥𝑛−2,3) − 𝐼3𝑦𝑛−1,3 − 𝐽3𝑦𝑛−2,3  (Eq. 22) 

∴ 𝑦𝑛 =  (𝑦𝑛,1)(𝑦𝑛,2)(𝑦𝑛,3) 

where, 

𝑅 = tan(𝑓𝑐𝜋 𝑓𝑠⁄ ) = 1.96261 𝑟𝑎𝑑, 𝜃𝑖 =
𝜋(5 + 2𝑖)

12
= , 𝑓𝑐 = 35𝐻𝑧, 𝑎𝑛𝑑 𝑓𝑠 = 100 𝐻𝑧 
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Table 3-3: 6th-order Butterworth low pass filter coefficients for G3G balance meters to be 
implemented in 230V lamp based on sampling frequency of 100 Hz 
 

Weighing 
filter 
coefficients 

 

Formulas for 𝜽𝒊 

 
Formulas for coefficients 
 

 
Values 

𝛢1 
𝜃1 =

𝜋(5 + 2 × 1)

12
=  1.83260 

𝛢1

=
𝑅2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃1
 

 
0.65644 

𝛣1 
𝜃1 =

𝜋(5 + 2 × 1)

12
= 1.83260 

𝛣1

=
2(𝑅2 − 1)

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃1
 

 
0.97203 

𝐷1 
𝜃1 =

𝜋(5 + 2 × 1)

12
= 1.83260 

𝐷1

=
1 + 𝑅2 + 2𝑅𝑐𝑜𝑠𝜃1

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃1
 

 
0.65372 

𝐸2 
𝜃2 =

𝜋(5 + 2 × 2)

12
= 2.35619 

𝐸2

=
𝑅2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃2
 

 
0.50500 

𝐹2 
𝜃2 =

𝜋(5 + 2 × 2)

12
=  2.35619 

𝐹2 =
2(𝑅2 − 1)

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃2
 

 
0.74779 

𝐺2 
𝜃2 =

𝜋(5 + 2 × 2)

12
=  2.35619 

𝐺2

=
1 + 𝑅2 + 2𝑅𝑐𝑜𝑠𝜃2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃2
 

 
0.27222 

𝐻3 
𝜃2 =

𝜋(5 + 2 × 3)

12
= 2.87979 

𝐻3

=
𝑅2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃3
 

 
0.44564 

𝐼3 
𝜃2 =

𝜋(5 + 2 × 3)

12
=  2.87979 

𝐼3 =
2(𝑅2 − 1)

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃3
 

 
0.65990 

𝐽3 
𝜃2 =

𝜋(5 + 2 × 3)

12
=  2.87979 

𝐽3 =
1 + 𝑅2 + 2𝑅𝑐𝑜𝑠𝜃3

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝜃3
 

 
0.12268 

 

Block 3 – Weighing Filter 

Analogue frequency response of the weighing filter is provided by (Eq. 23: 

𝐹𝑊𝐹(𝑠) =  
𝑘𝜔1𝑠

𝑠2+ 2𝜆𝑠 + 𝜔1
2 

 ×  
1+ 𝑠 𝜔2⁄

(1+ 𝑠 𝜔3⁄ )(1+ 𝑠 𝜔4⁄ )
  (Eq. 23) 

 
(Eq. 24 and (Eq. 25 define the transfer function in the z-domain, obtained by 

subdividing the weighting filter into two filters of second order and the bilinear 

transformation method: 

𝐻𝑊𝐹1(𝑧) =
𝑎−𝑎𝑧−2

𝑏+𝑐𝑧−1+𝑑𝑧−2
  (Eq. 24) 
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𝐻𝑊𝐹2(𝑧) =
𝑒+2𝑧−1+𝑓𝑧−2

𝑔+ℎ𝑧−1+𝐿𝑧−2  (Eq. 25) 

 

where 𝑓𝑠 = 100 𝐻𝑧, 𝑁1 = 4𝑓𝑠
2 + 4𝜆𝑓𝑠 + 𝑤1

2 , 𝑎𝑛𝑑 𝑁2 = 1 +
2𝑓𝑠

𝜔3
+

2𝑓𝑠

𝜔4
+

4𝑓𝑠
2

𝜔3𝜔4
   

 
Therefore, the weighting filter is represented by two differential equations ((Eq. 

26 and (Eq. 27): 

𝑦𝑛,1 = 𝐴(𝑥𝑛,1 − 𝑥𝑛−2,1) − 𝐵𝑦𝑛−1,1 − 𝐷𝑦𝑛−2,1  (Eq. 26) 

 
𝑦𝑛,2 = 𝐸𝑥𝑛,2 + 𝐹𝑥𝑛−1,2 + 𝐺𝑥𝑛−2,2 − 𝐼𝑦𝑛−1,2  − 𝐽𝑦𝑛−1,2  (Eq. 27) 

 
∴ 𝑦𝑛 =  (𝑦𝑛,1)(𝑦𝑛,2) 

Table 3-4: Constant values for the 230V incandescent lamp [24] 

 
Variable 230V lamp 

𝑘 1.74802 

𝜆 2π4.05981 

𝜔1 2π9.15494 

𝜔2 2π2.27979 

𝜔3 2π1.22535 

𝜔4 2π21.9 

 
Table 3-5: Weighing filter coefficients for G3G balance meters to be implemented in 230V lamp 
based on sampling frequency of 100 Hz 

 

Weighing filter 
coefficients 

 
Formulas 
 

 
Values 

𝐴 
𝐴 =  

2𝑘𝑤1𝑓𝑠

𝑁1
 

 
0.37580 

𝐵 
𝐵 =  

2𝑤1
2 − 8𝑓𝑠

2

𝑁1
 

 
-1.37132 

𝐷 
𝐷 =  

4𝑓𝑠
2 − 4𝜆𝑓𝑠 + 𝑤1

2

𝑁1
 

 
0.61865 

𝐸 

𝐸 =  
1 + 2

𝑓𝑠

𝜔2

𝑁2
 

 
0.22606 

𝐹 
𝐹 =  

2

𝑁2
 

 
0.030217 

𝐺 

𝐺 =  
1 − 2

𝑓𝑠

𝜔2

𝑁2
 

 
-0.19584 

𝐼 

𝐼 =  
2 −

8𝑓𝑠
2

𝜔3𝜔4

𝑁2
 

 
-1.11069 
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𝐽 

𝐽 =  
1 −

2𝑓𝑠

𝜔3
−

2𝑓𝑠

𝜔4
+

4𝑓𝑠
2

𝜔3𝜔4

𝑁2
 

 
0.17113 

 Block 4 – 1st-Order Low Pass Filter 

Analogue frequency response of the 1st-order low pass filter is given by (Eq. 

28: 

𝐹𝐻𝑃1𝑠𝑡
(𝑠) =  

𝑠

1+ 𝑠𝜏
=  

𝑠

1+ 𝑠/𝜔𝑐
  (Eq. 28) 

 
(Eq. 29 governs the transfer function in the z-domain, obtained by applying 

bilinear transformation method: 

 

𝐻𝐻𝑃1𝑠𝑡
(𝑧) =

𝑦(𝑛)

𝑥(𝑛)
=

∑ 𝑎(𝑘𝑀
𝑘=0 )𝑧−𝑘

∑ 𝑏(𝑘𝑁
𝑘=0 )𝑧−𝑘 =

𝑎(0) + 𝑎(1)𝑧−1 

1+𝑏(1)𝑧−1 = 𝐶
1 + 𝑧−1

1 + 𝑏𝑧−1   (Eq. 29) 

 

where 𝐶 =
𝑓𝑐 

𝑓𝑐 + 1
 , 𝑓𝑠 = 100 𝐻𝑧, 𝑓𝑐 =

1

2𝜋𝑓𝑠
= 0.0015915 𝑎𝑛𝑑 𝑎 =  

𝑓𝑐 − 1

𝑓𝑐 + 1
  

∴ 𝐻𝐿𝑃1𝑠𝑡
(𝑧) =

(
𝑓𝑐 

𝑓𝑐  +  1
) + (

𝑓𝑐 
𝑓𝑐  +  1

) 𝑧−1

1 +  (
𝑓𝑐  −  1
𝑓𝑐  +  1

) 𝑧−1
 

 
Therefore, the 1st-order low pass filter is represented by differential equations 

(Eq. 30: 

𝑦𝑛 =  𝑦𝑛 = −𝑏(1)𝑦(𝑛 − 1) + 𝑎(0)𝑥(𝑛) + 𝑎(1)(𝑥 − 1)  (Eq. 30) 

∴ 𝑦𝑛 =  − (
𝑓𝑐  −  1

𝑓𝑐  +  1
) 𝑦(𝑛 − 1) +  (

𝑓𝑐 

𝑓𝑐  +  1
) 𝑥(𝑛) + (

𝑓𝑐 

𝑓𝑐  +  1
) 𝑥(𝑛 − 1) 

 

Table 3-6: 1st-order low pass filter coefficients for G3G balance meters to be implemented in 
230V lamp based on sampling frequency of 100 Hz 
 

1st-order low pass filter 
coefficients 

 
Formulas 
 

 
Values 

 

𝑎0 (
𝑓𝑐 

𝑓𝑐  +  1
) 

 
0.0015890 

 
𝑎1 (

𝑓𝑐 

𝑓𝑐  +  1
) 

 
0.0015890 

 

𝑏1 (
𝑓𝑐  −  1

𝑓𝑐  +  1
) 

 
-0.99682 
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3.4 Testing of smart meter communication, authentication and 
encryption protocols  

According to the European Commission report [36] an estimation of 200 million 

smart meters for electricity (representing approximately 72% of all European 

consumers) will be installed by 2020. The smart meters providers must ensure 

that the meters cannot be tempted either by physical or electronic means 

because this will result in huge economic damage to electricity utilities 

companies. Smart meters rely on deferent protocol for communicate with the 

utilities companies to send or receive commands (i.e. remote disconnection 

from the grid) and data (billing information). A crucial part of this procedure is 

the authentication of the utility company when it tries to connect to the smart 

meters using the various communication protocols available. A framework will 

be developed for testing various methods to attack the authentication procedure 

and try to gain unauthorized access to the smart meters. This framework will 

be used to verify any new version of the software installed on the smart meters 

will be secured by unauthorized access via the carious communication 

protocols.   

3.4.1 Smart metering communication protocols 

The DLMS/COSEM protocol used by various Smart Meters for communication 

purposes with the concentrator. DLMS stands for Device Language Message 

Specification and consists of a general concept for abstract modeling of 

communication entities. On the other hand, COSEM is derived from the 

Companion Specification for Energy Metering. It includes a set of standards 

that defines the rules for data exchange between devices, such as an energy 

meter and a data accumulator. Together they enable several features, such as 

(a) an object model to view and access the different functionalities of a meter, 

(b) an identification system for all data, (c) a method for communicating with the 

model and (d) a transport layer to accommodate the information flows between 

the meter and other devices.  The official website of the DLMS User association 

and provides a simple introduction to the protocol. Registered members may 

also obtain the complete DLMS/COSEM specification, also known as the 

colored books, namely: 
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 Blue book: COSEM meter object model and the OBIS (OBject Identification 

System) codes[37] 

 Green book: describes the different architecture and protocols [37] 

 Yellow book: describes requirements and procedures for conformance testing. [37] 

 White book: glossary of terms for DLMS/COSEM [37] 

The protocol is based on the OSI (Open System Interconnection) seven layer 

model. However they are collapsed in four:  

 physical: defines how to transfer information to and from the meter 

 data link: provides the messaging methods to modify data and communicate with 

the device 

 transport: enables data transfer based various interfaces 

 application layers: represents the functional aspects of the energy meter so 

applications can access them 

Prior to exchanging metering information an association must be set up, 

initiated by the client, through the object model interface. From that moment the 

server is also able to send notifications without explicit request. 

Clock synchronization and transmission of measurement profiles are also 

features of DLMS/COSEM. Finally, it includes authentication and confidentiality 

services based on symmetric key encryption. 

In DLMS/COSEM the communication model follows the server/client paradigm. 

The meter acts as a server, and replies to the client’s application requests to 

retrieve data, change configurations, perform specific actions, etc. 

Prior to gaining access to the COSEM objects in the server, both parties, client 

and server, need to define the context, which includes: 

 the application context. 

 the authentication context. 

 the xDLMS context. 

xDLMS stands for extended DLMS and is an extension of the DLMS protocol, 

with emphasis on metering applications.  

The exchange of this information is called an application association (AA). 

Depending on the AA, different access rights may be granted by the server. 

Permissions can be defined with respect to object visibility but also with access 
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to specific attributes and methods. To that extent, the complete list of visible 

objects can be retrieved by the client and is called association view. 

In order to enforce access rights, DLMS/COSEM defines security policies for 

the access and transport of data. Access controls restrict access to the data 

stored in the meter. While data transport pertains to the use of cryptography to 

protect the data in transit. Ideally, only the parties with the necessary keys can 

then decrypt the data and obtain access to the original content, the plain text. 

Access to data can be restricted in DLMS/COSEM. Therefore metering 

equipment must authenticate the clients to ensure they are only awarded 

access to the data they have permission. The authentication context is 

negotiated between client and server at the AA stage. 

 DLMS/COSEM supports three categories of data access protection: 

 Lowest level security (no security). 

 Low Level Security (LLS): requires the use of a password. The server is not 

authenticated by the client 

 High Level Security (HLS): provides mutual (client and server) authentication 

In both LLS and HLS the authentication takes place during the AA. The HLS 

authentication process involves four steps that consist of exchanging 

challenges and inspecting the results with cryptographic methods. 

The HLS security context is indicated for all situations where no protection of 

the data communication channels is expected. This mode can use four different 

algorithms, MD5, SHA-1, GMAC (Galois Message Authentication Code) or a 

secret method known only by the meter and the client. For our case the GMAC 

[38] algorithm is used. 

In addition to client authentication, the data transport can be encrypted. These 

protections are applied to APDUs to ensure they cannot be deciphered on 

transit. The security policies available for data transport are: 

• No security. 

• Authentication. 

• Encryption. 

• Authentication and encryption. 

For our case the authentication and encryption mode is used. 
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3.4.2 Fuzzing 

Fuzzing [39] is an automated software testing technique, without access to the 

source code of the target, to uncover vulnerabilities through testing. This is 

done providing invalid, unexpected or random data as input to the computer 

program/device. The program/device is monitoring during the course of the test 

for exception like crashed, reboots, halts, delay in execution or memory leaks. 

The aim of the current research is to examine the implementation of the 

DLMS/COSEM protocol for the optical port (Figure 3-20) that is found on most 

of the smart meters, part of the physical layer. The communication device (seen 

attached to the meter: Figure 3-21) can be connected to any PC and it is 

essential a Serial to USB converter. 

 

Figure 3-20 Reference smart meter 

The reference smart meter is the GAMA 300, part of the line of smart meter by 

Elgama Electronica. It is an accurate single/three phase electricity meter with 

communication capabilities: optical, Power Line Communication (PLC) [40] , 

wireless or wired MBus [41], RS485, Ethernet. 
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Figure 3-21 Reference smart meter with optical communication device 
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4. Guidelines for scaling-up the existing 

infrastructure using mobile connectivity 

Scaling-up the existing infrastructure is possible by establishing the proper 

interventions leading to higher energy efficiency and cost savings. This can be 

achieved by following a coherent analysis and implementation of technological 

and scientific advances. Transition to a near zero energy district requires 

effective technological measures to be applied in building and district level and 

be supported by organisational measures and active user engagement. 

Guidelines and lessons learnt through the staff exchange and the related work 

performed in this phase are listed below: 

 Distributed analytic measurements of power consumption and production 

are a prerequisite for understanding the operational performance of 

settlements and identify performance gaps or areas for improvement.  

 Smart metering installations needs to follow specific rules which vary 

according to the application. District level smart metering needs to be 

hierarchical and provide ways to ensure the validity and reproduction of 

missing or corrupt data.  

 Smart monitoring needs to be easily accessible by authorised users and 

promote engagement by simple, accurate and valid representation of the 

parameters in the branch or installation under investigation. 

 Processing of measurements should be straightforward while avoiding 

vagueness, data conflicts or misleading information in the display.  

 Smart monitoring in itself is of limited value. Data analysis and processing 

is a necessary and demanding scientific task. Decision support tools need 

to be integrated in energy management platforms to ensure engineers and 

facility managers are assisted in the accurate translation of data.  

 Power predictions using ANN need to be mainstreamed and integrated in 

district energy management systems to provide real time control capabilities 

and complement demand response strategies and DR programs.  



645677 — SMART GEMS — H2020-MSCA-RISE-2014 
D4.3 Lessons learnt from the existing smart / micro grids. Guidelines for scaling-up the existing 

infrastructure using mobile connectivity  

 

 

50 
 

 ANN power predictions can be effectively utilised to control excess power 

of a microgrid and define whether energy should be stored or fed to the 

distribution grid. 

 ANN can provide a way to determine the baseline of a customer’s 

consumption so that changes in the power demand profile as a 

correspondence to a demand response event are rewarded on a commonly 

accepted ground.      

 The implementation of cost saving measures and investments in the 

appropriate mix of technology can result in a low payback period and 

financial sustainability, a prerequisite for carrying out renovations and 

improving district overall efficiency.   

 Apart from raising awareness campaigns or numerical displays of 

information difficult to interpret or relate to a users’ daily routine users 

engagement is an emerging field with a significant gap to be exploited.  

 New tools have emerged to allow users interpret dynamic pricing in a 

friendly and seamless way so that they can inform their energy related 

decisions accordingly.  

 Technological advances and energy management state of the art need to 

be linked with sociology and management in order to address how 

influencing one’s every day actions can be achieved in a manner not 

interfering with social or other values linked to the person’s well-being and 

morals. 

 Specific equipment has recently become commercially available for 

industrial customers and other district level demand response applications 

to be implemented in wide scale.  

 Smart metering can be effectively implemented to assist in the appropriate 

planning of Advanced Metering Infrastructure, increase penetration of 

renewable energy and in the identification of power quality deviations. 

Essentially, this increases the power grid capabilities and decreases the 

risks associated with voltage flickering which can trigger health problems.  

 Smart metering can also produce social benefits as there will be a reduction 

of energy loss in the power grid but also as this is one of the technical 
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upgrades for linking the cost of energy consumption to the costs of 

production, transfer and distribution of energy.      

 



645677 — SMART GEMS — H2020-MSCA-RISE-2014 
D4.3 Lessons learnt from the existing smart / micro grids. Guidelines for scaling-up the existing 

infrastructure using mobile connectivity  

 

 

52 
 

5. Conclusions  

In this report several activities performed during the staff exchange of industrial 

and academic partners in the Smart GEMS consortium were presented. Work 

included research related to the operational analysis of smart microgrids and 

the development of smart metering applications. Various issues have been 

raised and a set of guidelines have been drawn to inform the procedures for 

scaling up of existing smart / micro grid infrastructure. Smart monitoring and 

data exploitation for energy planning and demand response was explored. 

Power consumption and production predictions based on Artificial Neural 

Network models were tested and proven to be a robust technique for the 

implementation of Demand Response control strategies and evaluation of 

savings. On the utility side, it was demonstrated that smart metering can 

contribute to the advancement of smart grids not just by measuring and 

transmitting data of energy flows, or by executing remote control but also via 

dynamically establishing sources of voltage flickering and dealing with power 

quality issues. Finally, communication protocols and encryption methods were 

tested as part of the required advancements for the new generation smart 

meters. Overall experience shows that smart grid developments are an ongoing 

progress and step by step continuous and systematic efforts are vital for the 

transition of the technical, regulatory and market aspects.        
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